Hierarchical Power
Management with
Application to Scheduling

Peng Rong and Massoud Pedram

Department of Electrical Engineering
University of Southern California
2005 ISLPED

Outline

Introduction

Hierarchical Power Management

— A two-level power management architecture
— Application scheduling

— Capturing component dependencies

System Modeling and Solution Technique
Experimental Results
Conclusion

Dynamic Power Management (DPM)

m Principles of operation

] Sele_Ctively shut-down State Information | Power _ State Information
the idle components or

Manager '
slow the underutilized

| Command A

|
components i J’ |
i

Adapt system behavior Tearce o
to application needs Provider [€] Service Queue 4—' Requestor

[
}Slate Information

and available
resources

= A power management system

— Multiple service requestors (SR), multiple service providers (SP),
prioritized service queues (SQ)

— A power manager (PM) monitors the system state and issues
commands to shut-down or slow-down SP’s

— Each SP has multiple states which are different in terms of their
power dissipation and service speeds

Modern Microelectronic Systems

Comprise of multiple m Power-constrained
heterogeneous systems, A widening
computing and “battery gap”
communication petween system
components power needs and
pattery capacity

S
=
i
£
W
£
L]
=]
8
@
£
4]

1986 1990 1994 1998 2002
- Power (W) 4 Energy Density (Whikg

Self Power-Managed Components

= Protocol-defined power management on data links
e.g., USB and power saving mode in IEEE 802.11

s Hardware components with built-in power
managers: Enhanced adaptive battery life extender
(EABLE) for Hitachi disk drive

w

Command
JBurst Ends

Inactive
‘+— >

POWER (W)
- N

LOW POWER
IDLE STANDBY

5 10 15
TIME(S)

A Hierarchal Power Management
(HPM) Architecture

m Supports DPM functions at two levels

— Component-level functions developed by the IP
vendor/manufacturer
= Simple but generic DPM policy, e.g., timeout policy
— System-level functions developed by the system
designer/integrator
= Service flow regulation
= Application scheduling
= Online tuning of component-level DPM functions

m Benefits

— Facilitates power-awareness in systems composed of
off-the-shelf components and IP blocks

— Capable of handling hard and/or soft constraints

Prior Work Related to HPM

= Managing power consumption in Networks on
Chips [Simunic et al. 2002]
— Network-centric DPM: Source nodes use network

sleep/wakeup requests to force sink nodes to enter
specified states

m Hierarchical adaptive DPM [Ren and Marculescu,
2003]

— A hierarchically constructed DPM policy: Seeks an
optimal rule to select and employ a policy from
among a set of pre-computed ones

Timeout DPM Techniques with an
Example

= Timeout policies

— Start a timer at the beginning of each idle mode;
shut down the system if it has been idle for some
timeout value

— Efficient, but can be ineffective because it ignores
statistical characteristics of the workload

SR1 SR2 SR3 SR4 Total Energy

PowerA @ @ @ @ 310J
(W) : ; > :

20

10

:I II :I -

0 23 7 9 11 12 1516 20 2122 23 27 Time
Service time 1s (s)

Timeout 4s Wake-up [l Busy Idle

SR: Service Request

Service Flow Control for Timeout-
based Technigues

= Flow Control Steps
— Block and Transfer (Xfer)
— Generate Fake SR (GenF)

Service flow Xfer Xfer GenF
Control: Block Xfer Xfer

SR2SR2 SR3 SR4

- .~ Total E
(..)O O '.O otaZSOnJergy

)

Service time 1s
Timeout 4s

7 9 12 15 20 21 26

Wake-up . Busy Idle

SR: Service Request

Application Scheduling for DPM:
Overview

Setup: Applications generate SRs to different devices;
these SRs tend to have different rates

Problem statement: Find a job schedule which minimizes
the total power dissipation

Related Work

— Online job scheduling for low power [Lu et al. 2002]
m Groups jobs based on their device usage requirements
= Minimizes power_b% checking every possible execution

sequence of the job groups

Our Approach

— Continuous-time Markovian decision process (CTMDP)
based application-level scheduling

— Scheduling is based on states of the individual
components, the number of waiting tasks, and
characteristics of the application

— Performed concurrently with DPM optimal policy derivation

Global System State-based Application
Scheduling for DPM — An Example

= Two applications Al and A2 generate SRs
— Al: 1 SR@8s, A2: 3 SRs@8s

= Without application scheduling
— Each application is alternately executed for exactly 4s

Al A2 Al A2

'I;'otal Energy

<) 0 000 0 000 *
e

Service time 1s : : } ;

. Time
Timeout 4s 8 12 16 20 24 28 32 =

Example Cont'd

= With application scheduling

— Scheduling is based on the number of waiting
requests in the SQ

The scheduler
switches to A2
when Al
generates an SR

A Al A2 Al

Total Energy
p?\;'vv;rA - 0000 0000 2603

20

10 : : i f
Service time 1s : : .J
4 8 12 16 20 pL 28 3

Timeout 4s 0

y

CTMDP Model of HPM Architecture

Application

SR1 <— Q — SR2

¢ A schedule i
CPU
scheduler

SQ1 GPM SQ2

v ;i‘ control v

SFCl1 SFC2
Shared

resource

CQl 2 » CQ2

/ content
L.PM1] ‘ LPM2

N \A ‘//
control control

Model of Service Flow Control

m Service flow control model contains three states:
— GenF: Generate a fake service request

— Block: Block all incoming SR’s from entering the CQ
of the SP

— Xfer: Move the SR’s from the SQ to the CQ

Model of the Application

m Each application is modeled by a stationary CTMDP

— model describes SR generation rates of the
application during its execution

— state: (r1.,,/5p)
m /-, denotes the service generation state x of application

type n

Model of the Application Pool

= The application pool is modeled as a stationary
CTMDP

— global states (7.7, ,fag)
m Flag = / means that application /7 Is running

Fairness of Application Execution

m Allocate a fair share of the CPU time to each
application

— Do not intervene In the scheduling of applications
that have the same workload characteristics

— Only apply to applications that exhibit different
workload characteristics
m A fairness constraint

— Application type /cannot, on average, occupy more
than c¢; percent of the CPU time

Model of Simulated Service Provider

= Model of the simulated service provider
— TG; : non-functional time-out states, simulate the
timeout policy

— SSP autonomously transfers to TO; state when it is
idle

Verifying the SSP Model

m SSP with three TO, states provides sufficient
accuracy

= O
@)

a = 10
o ©

3 a)

(O]

>

<

© o9 =t ! i
(o) e}
| | | | | |
[y
o

o°
~

0 1 0
10" SR average interval (s) 10°sR average interval (s)

The Complete Model

s CTMDP-based system model

— Components: application pool (APPL), service flow
control (SFC), and simulated service provider (SSP)

Hierarchical DPM Policy Optimization

= Hierarchical DPM policy optimization is formulated
as a linear programming problem

DPM Policy Implementation

= Policy Implementation Tree

— Each leaf-node represents a policy for a given set of
system parameters, e.g., an overall delay constraint
and CPU time share for different applications

?

: 0.2
Delay constraint: (0 1)3 ()‘ ‘ *

CPU share of é} A) A) (5
applications: Leaf-nodes

(0.1, 0.9) (0.2, 0.8)

Experimental Setup

= We recorded device generation traces for two types

of applications: network search and file
manipulation

m We used the following SR generation characteristics

— Appll: A Poisson process with an average rate of
0.208 requests per second
— Appl2: A two-state CTMDP model
m state transition rate

= SR generation rates: 4,,to hard disk, 4

wian 10 WLAN
card are

Experimental Setup

m Energy and transition data of hard disk and WLAN
card

Hitachi State Power Start-up Wake-up
7K60 (w) Energy Time (S)
()
Active 2.5

Performance 2.0
idle

Low power 0.85
idle

Stand-by 0.25
Orinoco Transfer 1.4
WLAN Receive 0.9

Sleep 0.05

Simulation Results

m Results of Hierarchical DPM for single SP: Hard disk

CPU
usage

0.53:0.47

LPM

Perf.

policy Cons.

TO1

TO2

TO1

TO2

TO1

TO2

0.0765
0.5
0.0882
0.5
0.07/8
0.5
0.0903
0.5
0.0685
0.5
0.076
0.5

1PM-TO

(W)

1.2728
1.2728
1.1582
1.1582
1.3805
1.3805
1.2559
1.2559
1.19
1.19
1.0162
1.0162

1PM-
CTMDP
W

1.0467
0.9309
1.0414
0.9309
1.1152
0.9956
1.1107
0.9956
0.9647
0.7922
0.9451
0.7922

HPM
(W)

1.2591
1.0943
1.1436
1.0106
1.342
1.1047
1.2032
1.0966
1.1058
0.9276
1.012
0.8422

Results Cont’'d

= Distribution of average power
— Setup (CPU usage: 0.53:0.47; Perf. Constraint: 0.5; TO1)

O HPM-S
@ HPM
O 1PM-TO

Active Perf. Idle Low—Pow Stand-by Wake—up
Idle

=
E
S
—
N—
$-<
]
=
S
o
o)
o
S
&
O
>
<

SP Power States

Results Cont’'d

m Simulation results of Hierarchical DPM for both SPs:
Hard disk and WLAN card

Perf. Cons. for 1PM- 1PM -
different SPs TO2 CTMDP
(W) (W)

HD 0.09 1.157 1.045

WLAN 0.05 0.384 0.343

Sim2 HD 0.2 1.157 1.01
WLAN 0.2 0.384 0.322

Conclusions

A hierarchical power management architecture was
proposed which aimed at facilitating power-
awareness in a system with multiple components

The proposed architecture divided power
management function into two layers: system-level
and component-level

The system-level power management was
formulated as a concurrent service request flow
regulation and application scheduling problem

Future Directions
— Tune parameters of local DPM policy
— Develop an online adaptive policy w/ variable parameters

Model of Component Dependencies

s Mutual Exclusion

— Example: Two SPs contend for the same non-
sharable resource, e.g., a low speed 1/0 bus

— This type of hard dependence constraint can be
accounted for by marking any system state that
violates the mutual exclusion as invalid and by
forbidding all state-action pairs that cause the system

to transit to an invalid state

m Shared Resource Constraint

— Example: SPs may want to buffer their SRs in a
shared buffering area of finite size

— This type of soft dependency constraint is handled by
adding appropriate constraints to the system-level

power optimization problem formulation

