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Introduction

“Smaller and faster” translate into high power densities, higher 
operating temperature, and lower circuit reliability.operating temperature, and lower circuit reliability.

Local Hot Spots are becoming more prevalent in VLSI circuits.

It is no longer sufficient to merely add a bigger fan as a downstream 
fix for thermal problems.

Thermal managements need to be best accomplished when it is 
incorporated starting at the beginning of the design cycle.

Any applications that generate heat should engage in runtime 
thermal management technique i e dynamic thermal managementthermal management technique, i.e., dynamic thermal management.
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Prior Work

K. Skadron, et al. : architectural-level thermal model, HotSpot, (ISCA 
2003)
D. Brooks, et al. : trigger mechanism (HPCA 2001).
J. Srinivasan, et al. : predictive DTM (Int’l Conf. on Supercomputing 
2003)2003)
S. Gurumurthi, et al. : performance optimization problem for disk 
drives (SIGARCH 2005)

For a good survey, see P. Dadvar, et al. (Semi-Therm Symp. 2005) 
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Motivation

The above-mentioned DPM techniques have difficulty observing the 
peak power dissipation on the chip because they rely on a single 
temperature sensor, whereas the peak temperature may appear in a 
number of different places on the chip. This gives rise to uncertainty
about the true temperature state of a chip. 
Improving the accuracy of decision making in thermal management by 
modeling and assessing the uncertainty in temperature observation is 
an important step to guarantee the quality of electronics.an important step to guarantee the quality of electronics.

Develop a stochastic thermal management framework, based on
- Partially observable Markov decision process (POMDP)
- Semi-Markov decision process (SMDP)

Combine DTM and DVFS to control temperature of system and its 
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Uncertainty

Critical problems in temperature profile characterization 
are:

Placement restriction for the on-chip temperature sensor
Non-uniform temperature distribution across the chip.

This causes uncertainty in the temperature observation.This causes uncertainty in the temperature observation.
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Stochastic Process Model

The uncertainty problem, where a thermal manager cannot reliably 
identify the thermal state of the chip, can be solved by modeling 
decision making by a stochastic process.
A thermal manager observes the overall thermal state and issues 
commands (i.e., actions) to control the evolution of the thermal state ( , )
of the system.
These actions and thermal states determine the next-state probability 
distribution over possible next stepsdistribution over possible next steps.

The sequence of thermal states of the system can be modeled as a 
stochastic process.
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Thermal Management Framework

SMDP to model event-driven decision making.
POMDP to consider the uncertainty in temperature observation.y p

Note: The time spent in a particular state in the SMDP follows an arbitrary distribution,
realistic assumption than an exponential distribution.

Definition 1: Partially Observable Semi-Markov Decision Process. 
A POSMDP is a tuple (S, A, O, T, R, Z) such that
1) S is a finite set of states1) S is a finite set of states.
2) A is a finite set of actions.
3) O is a finite set of observations.
4) T is a transition probability function T: S × A → ∆(S)4) T is a transition probability function. T: S × A → ∆(S)
5) R is a reward function. R: S × A → ℜ
6) Z is an observation function. Z: S × A → ∆(Z)
where ∆( ) denotes the set of probability distributions
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POSMDP By Way of an Example
Statet+1POSMDP Framework
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POSMDP framework for dynamic thermal management
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Full History

In an observable environment, observations are probabilistically 
dependent on the underlying chip temperature.y g

Transition probability function determines the probability of a transition 
from thermal state s to s’ after executing action a

( ', , ) ( ' | , )= = = =t+1 t tT s a s Prob s s a a s s

Observation function captures the relationship between the actual state 
and the observationand the observation.

( ', ', ) ( ' | , ')= = = =t+1 t t+1Z o s a Prob o o a a s s

Since thermal manager cannot fully observe the thermal state of the 
system, it makes decisions based on the observable system history.

R l i th f ll hi t 0 0 1 1 t t k th d i i
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Relying on the full history <s0, a0>, <s1, a1>,…,<st, at> makes the decision
Process non-Markovian, which is not desirable.



How to Avoid Reliance on Full History

Although the observation gives the thermal manager some evidence 
about the current state s, s is not exactly known.

We maintain a distribution over states, called a belief state b.

The belief state (vector) for state s is denoted as b(s); Given any actual ( ) ( ) y
state, the sum of belief state probabilities over all belief states is equal to 
1.
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[ b b b ]
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Note: Even though we know the action, the observation is not known in advance 
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Markovian Property
By using the state space B, a properly updated probability distribution 
over the thermal state S, we can convert the original history-based 
decision making into into a fully observable SMDP.
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Thermal Management Framework
Thermal manager’s goal is to choose a policy that minimizes a cost.
Let π: B → A represent a stationary policy that maps probability p y p y p p y
distribution over states to actions. 

By incorporating expectation over actions, the set of stationary policies y p g p y p
can be determined by using Bellman equation

( ) ( ) ( , )
s S

C b b s k s aπ

∈
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Stochastic DTM
A stochastic dynamic thermal management based on POSMDP. 

Dynamic thermal manager
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Definition 2: Observation strategy. In policy tree, an observation 
strategy is defined as ψ : O → Λ such that
1) O is a finite set of observations
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2) Λ = {(a, ψ) | a ∈ A, ψ ∈ Λo}
where A is a finite set of actions, and Λo is a finite set of all policy trees.



Stochastic DTM
A multi-objective design optimization method is used to optimize the 
performance metrics by formulating mathematical programming model.

Let a sequence of belief states b0, b1,.., bn denote a processing path δ
from b0 to bn of length n.
For a policy π the discounted cost C of a processing path δ of length nFor a policy π, the discounted cost C of a processing path δ of length n
is defined as

0
( ) ( , )

n

i
it i iC cost b aπ δ γ

=∑

where ti denotes the duration of time that the system spends in belief state bi

before action ai causes a transition to state bi+1 , and
1

( ) ( ) ( ' | ) ( ')= + ∑ Probcost b a pow b b b a ene b b
'

( , ) ( ) ( | , ) ( , )
( , )τ ∈

= + ∑
b B

Probcost b a pow b b b a ene b b
b a

- pow(b) is the power consumption of the system in belief state b
- Prob(b’ | b, a) is the probability of being in state b’ after action a in state b
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- ene(b, b’) is the energy required by the system to transit from state b to b’
- τ(b, a) is the expected duration of time that system spent in b when action a



Stochastic DTM
Considering the expectation with respect to the policy over the set of 
processing paths starting in state b, the expected cost of the system is

The design objective is a vector J of performance metrics we are trying 

( ) [ ( )]π π δ=avgpow b EXP C

to optimize, where the design vector a contains DVFS set.

System Model Optimizer performance
analysis

a

J{design objective} analysisJsys
{design objective}
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Note: χ(b, a) is the frequency that the system is in thermal state b and action a is issued.



Experimental Results
For experimental setup, a 32bit RISC processor is designed in 0.18um 
technology, and stochastic framework is implemented in Matlab.

In the first experiment, we analyzed power dissipation distribution of 
RISC.

SPECintSPECint
2000

gcc
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Instruction characteristics for SPECint2000

Power reportSAIF backward file

Power simulation flow



Experimental Results
The second experiment is to demonstrate the effectiveness of our 
proposed SDTM algorithm.

- Randomly choose a sequence of 40 program, e.g., gcc1-gzip2-gap3-…-gcc39-gcc40.
- The sequence of programs is executed on the RISC.
- Calculate the belief state.

end point
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Experimental Results
Operating temperature of the RISC by running the sequence.

1.95V / 500MHz

1.80V / 350MHz

1 65V / 200MHz

0                     20                      40                     60                     80                   100

1.65V / 200MHz

SDTM

Average temperature [ºC]

Average temperature for test scenario
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Experimental Results
A low value on the action axis means low supply voltage and low 
frequency Values of possible target actions, are obtained by multi-
objective optimization.

Average power

Throughput

1.00

1.95V/500MHz 1.80V/350MHz 1.65V/200MHz SDTM

0.85 0.72 0.75

1.00 0.69 0.40 0.69

optimal power

g p

Energy/operation

.00 0.69 0. 0 0.69

1.00 1.23 1.79 1.08

Achieve low power consumption and operating temperature with little 
f /optimal power

zone

Optimization with multi objective functions

performance Impact on throughput and energy/operation metrics.
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Optimization with multi-objective functions.



Conclusion
Proposed a stochastic dynamic thermal management technique by 
providing stochastic management framework to improve the accuracy 
of decision making.

POSMDP-based thermal management controls the thermal states of the 
system and makes a decision (DVFS set) to reduce operating 
temperature.

Experimental results with design optimization formulations demonstrate 
the effectiveness of our algorithm (low temperature with little impact on 
performance metrics).
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Thank You !!
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Yet Another Example
A scenario where starting with an action a2 issued at time t, the next 
system state may be one of three possible ones as observed at time 

a2 = [1.8V / 350MHz] a2 = [1.8V / 350MHz]
Observation

a2 = [1.8V / 350MHz]

t+1.
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Observation

Time [s] Time [s] Time [s]

Case a: the system remains in the active mode with steady workload, resulting 
in the same chip temperature.in the same chip temperature.

Case b: the system remains in the active mode, but heavy workload, resulting 
in temperature increase.
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Case c: the system enters into the idle mode.



Backup Slide
Given CPU benchmark SPECint 2000 such as gcc, gap, and gzip with following
characteristics,

program # of ints (in Million)program # of ints. (in Million)
gcc 6765
gap 12726
gzip 75942

Calculate the CPI and total execution time.

For example, in gcc,

Operation Freq Cycle CPI %Operation Freq.   Cycle CPI %
ALU 40% 1 40x1/100 = 0.4 0.4/1.4 = 25%
Load 35% 2 35x2/100 = 0.7 0.7/1.6 = 43%
Store 10% 2 10x2/100 = 0.2 0.2/1.6 = 13%
Branch 15% 2 15x2/100 = 0.3 0.3/1.6 = 19%

Total CPI = 1.6

CPU time = Inst/program x cycles/Inst x second/cycle
= I x CPI x C

University of Southern CaliforniaICCD 2006

= 6765 x 1.6 x 2ns (500MHz)
= 21648


