
Abstract
This paper presents a partitioning-based, timing-driven placement
algorithm. The partitioning step itself is timing-driven and based on
solving a quadratic programming problem iteratively. The place-
ment algorithm does not rely on interleaved timing calculations,
which tend to be inaccurate. Instead, it achieves the desired result
by controlling the number of times that a path in the circuit can be
cut. In addition to the cutting constraint, a pre-locking mechanism
and timing-aware terminal propagation are developed and inte-
grated into the flow. The detailed placement step is formulated as a
constrained quadratic program and solved efficiently. Results show
improvements of 23.41% on average compared to another timing-
driven placement system Timing-QUAD and significant improve-
ments over Eisenmann’s placement algorithm.

1. Introduction
Steady advances in semiconductor technology have resulted in sig-
nificant improvements in the performance of CMOS devices. For
these improvements to translate to the VLSI circuit and system
designs, one must resort to powerful, timing-aware computer aided
design techniques and tools at all levels of design abstraction,
including architecture logic and physical level. A good placement
tool must be capable of minimizing the maximum circuit delay by
reducing the delays of interconnects along the timing critical paths.
This is a challenging task because of the large number of paths that
must be considered and the complex inter-dependence among the
various paths.

Timing-driven placement schemes have been classified as
either net-based [1][2][3][4] or path-based [5][6][7]. Net-based
algorithms seek to control the delay on a signal path by imposing a
delay upper-bound or by assigning a weight to each net. The net-
based approach usually overconstrains the placement algorithm.
Path-based approaches model the problem correctly, but are only
applicable to small circuits since explicit enumeration of all paths is
an intractable task. As a result, most of the timing-driven placement
algorithms proposed to-date are net-based [8][9][10]. More pre-
cisely, they perform circuit placement by interleaving a timing-
analysis step with a placement step. The timing-analysis step is
responsible for identifying the critical nets. The weights of the cir-
cuit nets are updated based on their timing criticality. The place-
ment step then determines the relative locations of gates according
to the net weights. These two steps are interleaved until the target
delay is achieved or the current result cannot be further improved.
The timing analysis techniques used in this two-step flow are stan-
dard. The methods used for identifying the critical nets and the
placement technique that vary from one implementation to next.

The authors of [8] adopt a quadratic objective function formu-
lation for minimizing the wire length. They also perform a longest
path calculation during each timing analysis step. The weights of
nets along the critical path are updated by adding a constant to the
corresponding edge weights. This approach however suffers from
some major weaknesses. The first drawback is the so-called oscilla-
tion problem. This is a commonly-encountered problem in circuits
where many paths have nearly the same negative slack. In addition
to the oscillation problem, quadratic formulation does not minimize
the length of nets, instead, it minimizes the square of edge lengths.
As a result, it may result in a number of medium-length nets in
order to eliminate one long net. Sometimes however a long net may
be a better solution than a number of medium-length nets, for
example, when the paths which share this long net have very small
intrinsic delays.

*This work was supported in part by SRC under contract No. 98-DJ-606 and NSF
under contract No. MIP-9628999.

The authors of [10] implement the timing-driven placement by
repeatedly performing quadrisectioning on the circuit. The top-
down quadrisectioning is driven by net cost vectors which is
updated during the timing-analysis steps. Top-down partitioning-
based timing-driven placements avoid the problems mentioned
above. However, the timing information available during the parti-
tioning stages is incomplete until the final placement layout is
reached. A partitioning-based placement may thus make irrevers-
ible, incorrect decisions during early partitioning stages due to the
incomplete timing information.

A timing-driven placement algorithm based on simulated
annealing is presented in [11]. It is a path-based approach. How-
ever, because it is impossible to enumerate all the paths, the authors
of [11] compute the first twenty longest paths of the circuit. The
difference of user-specified upper bounds and critical path delays
are added to the cost function as a timing penalty. However, in
many cases, the path delay of the most critical paths may differ
from the delays of hundreds or thousands of the other paths in the
circuit by only a small amount. Considering a small number of such
paths is not very helpful. The ideal situation is to take all such
nearly-critical paths into account simultaneously. This however sig-
nificantly increases the computational complexity.

In this paper, we present a partitioning-based timing-driven
placement algorithm TPIQ_P which is implemented based on the
principle that the number of cuts on paths in the circuits must be
carefully controlled. A path which is cut earlier has a higher proba-
bility to assume a longer wire length. So a critical path must either
not be cut in the early partitioning stages or restricted to have fewer
cuts in the subsequent partitioning stages. To achieve this goal, sim-
ply updating the weights of critical nets is not of much help since
there is no way to estimate the net weights exactly. Controlling the
number of cuts on paths in any given partitioning stage is also not
helpful because a net may be cut several times during different par-
titioning stages. Our approach borrows from both net-based and
path-based algorithms. More precisely, critical nets are given large
weights exactly like what the net-based algorithms do. Paths are
also given an upper limit on the maximum number of cuts they can
tolerate. Imposing this limit on a path helps achieve the goal of
making the path as geometrically “straight” as possible. Note that
when the number of cuts along a path is decreased, the path delay is
reduced. Our experimental results on a number of benchmark cir-
cuits show that TPIQ_P outperforms the best published results of
any timing-driven placement algorithm.

The remainder of the paper is organized as follows: Section 2
describes of our timing-driven placement. Section 3 is the formula-
tion. The experimental results are given in section 4. Section 5 is
the conclusion.

2. Description
Partitioning-based placement determines the locations of gates on
the layout area by repeatedly partitioning the given circuit into two
or more sub-circuits. The available layout area is also partitioned
into subsections. Each of the sub-circuits is assigned to a subsec-
tion. This process is carried out until each sub-circuits consists of a
small number of cells as Figure 1 shows.

Traditionally, the objective of dividing a given circuit in a par-
titioning-based placement algorithm is to minimize the number of
cut nets among sub-circuits. However, min-cut is a poor model of
the real placement objective, especially because it ignores the cir-
cuit delay. Although static timing analysis can help calculate the
critical path delays, this timing information is not accurate unless
the final partitioning step is executed. Because of this intrinsic inac-
curacy, in TPIQ_P, we do not rely on performing timing recalcula-
tion after each partitioning step. Instead, we predict the critical
paths from the beginning and then enforce cutting constraints (i.e.,

 Timing-driven Placement Based on Partitioning with Dynamic Cut-net Control*

Shih-Lian Ou and Massoud Pedram
Department of EE-Systems, University of Southern California

Los Angeles, CA90089

maximum number of times the path can be cut during the iterative
partitioning steps) on these paths.

As recursive partitioning steps take place, critical paths in the
circuit change. Intrinsic delays are fixed throughout the whole parti-
tioning steps. It is the extrinsic edge delays that change and cause
non-critical paths to become critical or vise versa. The main task of
a timing-driven placement is to control the lengths of nets along the
critical paths.

In our approach, the extrinsic delay is calculated from a
lumped Elmore delay model [12].

Let’s consider the path which has the longest intrinsic delay
first. The path with maximum logic delay (sum of intrinsic and
extrinsic delays when Rnet = Cnet = 0) is obtained by performing a
timing analysis. Let the logic delay of that path be denoted as dlong-

est. The remaining M-1 longest paths may have logic delays very
close to dlongest. Minimizing only one longest path may cause
another long path to become more critical immediately. Hence, it is
necessary to take the M longest paths into account simultaneously.
These M longest paths are defined as the critical path set η in
TPIQ_P. A path L which is not in the critical path set η may
become critical if it contains either a large net or receives many cut-
nets. A large net tends to have longer net length and, thus contrib-
utes more to the path delay. Similarly, a path that has already been
cut a large number of times has a high probability of becoming crit-
ical if the number of future cuts is not controlled. To prevent such
nets from generating new critical paths, the large nets and the cut
nets must also be considered as critical nets.

Here we describe the critical net set. Let Γ denote the critical
net set, nk the kth net, |nk| the number of nodes that nk connects, and
wk the weight of net nk. Initially, every net has a unit weight. β(nk) is
a flag that indicates whether nk has been cut or not.

We define the critical net set Γ as the union of nets in η, large
nets, and cut nets.

Γ = {nk| nk ∈ nets in η} ∪ {nk| |nk| > size threshold} ∪
{nk| β(nk) = 1},

where the size threshold is a user-specified value. All critical nets in
a part pi are assigned the same weight Wi. Wi must be large enough
so that the cells of a critical net are forced to remain in the same
part. We set Wi to be equal to the summation of the weights of non-
critical nets in a part pi.

Wi =

If a non-critical net is cut in the current partitioning stage, it
becomes critical in the remaining partitioning stages and its weight
is updated. Appending the cut nets to the critical net set prevents the
cut nets from being cut further and only allows the uncut, non-criti-
cal nets to be possibly cut in the subsequent partitioning stages.

Concentrating on handling critical nets only does not ensure a
reduction in circuit delay. The delay of a non-critical path may
increase rapidly if it is cut many times during an early partitioning
stage. So, it is necessary to set an upper-bound on the number of
allowed cuts on each path. We adopt TPIQ [13] as the partitioner
for the placement tool TPIQ_P to achieve this goal.

We illustrate the processing procedure of TPIQ_P in Figure 2.
Before the partitioning stage begins, the set of paths which have
longer logic delays are identified. The critical nets are thus deter-
mined and the corresponding weights are updated. The updated net-
list is passed as input to a partitioner whose responsibility is to min-
imize the cut-size. A simple calculation follows to check which
nodes violate the cutting poicy. The cutting policy is a set of con-

straints which restrict the number of cuts allowed for each path. The
cutting policy is comprised of the restrictions for the paths in the
circuits. Because an output node can be the output of both critical
paths and non-critical paths, the constraints for general paths and
the constraints for critical paths must be formulated separately.
Thus, the cutting policy constraints consist of two categories, one
for general paths and the other for critical paths. Let PC denote the
cutting policy. PC={PCG, PCL} where PCL denotes the maximum
number of cuts allowed for a critical path L and PCG refers to the
maximum number of cuts allowed for a general path.

In general, PCL is more strict (i.e. smaller) than PCG. If there
are paths whose cuts exceed the related PCs, TPIQ Phase II is
applied to satisfy the cutting policy while trying to minimize the
cut-size.

We have extended the 2-way partitioning of TPIQ to a quadri-
section partitioning to reflect the two dimensional characteristics of
the circuit placement. The solution of a quadratic programming in
TPIQ_P is thus represented by an (X, Y) pair, where X = [x1, x2, ...
,xN]T and Y = [Y1, Y2, ..., yN]T. Four dummy fixed nodes are intro-
duced, one for each quadrant. These fixed nodes are placed at (0, 0),

• • • •
• • • •

Figure 1. The layout area of a 4-way partitioning-

first level

second level

based placement.

β nk()
1 if nk has been cut

0 if nk has not been cut



=

1 β– nk()() wk⋅
nk pi∈
∑

Net-list and timing
information

Critical net identifi-
cation and weight
updating

4-way TPIQ Phase I
or another min-cut
4-way partitioner

Is the cut-
ting policy
satisfied?

 pre-locking
Floating-nodes

Do partiti-
oning steps
finish?

Yes

No

No

Yes

4-way TPIQ Phase II

linear assignment

Detail placement by
quadratic formulation

Figure 2. Flow of TPIQ_P.

(1, 0), (0, 1), and (1, 1) respectively. Figure 3 shows the parts P0, P1,
P2, and P3 and the corresponding (x, y) pairs of fixed nodes.

As TPIQ phase II proceeds, nodes are gradually anchored to
one of the fixed nodes. If the final solution of TPIQ Phase II con-
tains values that do not converge to 0 or 1 in either x-coordinate or
y-coordinate, the corresponding nodes will be pre-locked to the part
which contains the corresponding nodes. Pre-locking a node to a
specific sub-part prevents subsequent partitioning steps from gener-
ating a longer path delay for paths that go through the pre-locked
node (please see below for detail).The partitioning and pre-locking
procedure are iteratively executed until the numbers of nodes in all
parts are below a threshold value τ.

The position of a node vi is represented by two position vec-
tors Vi

x and Vi
y:

Vi
x = [v1

xi, v2
xi, ... vm

xi], vj
xi ∈ {0, 1} for 1≤ j ≤ m.

where m is the maximum level of the partitioning process.
Similarly,

Vi
y = [v1

yi, v2
yi, ... vm

yi], vj
yi ∈ {0, 1} for 1≤ j ≤ m.

The pair (vj
xi, vj

yi) indicates the coordinates of the part where
node vi is assigned to after the jth level of the partitioning process.
The value of vj

xi (or vj
yi) is determined by either the partitioning pro-

cess itself or by the pre-locking procedure. The solution pair (xi, yi)
of TPIQ Phase II indicates which part vi should be assigned to. If
both xi and yi converge to binary values 0 or 1, the part is immedi-
ately determined. Otherwise, vi is a floating node. A floating node
is critical to the paths which come from (or go to) different parts
and pass through that node. Replicating floating nodes as TPIQ
does, is not practical in this application because the cost of replicat-
ing nodes is too high for placement (also, the node replication may
not be allowed). Instead of replicating nodes, we pre-lock the float-
ing nodes to specific parts for the remaining partitioning stages.
Figure 4 depicts the assignments for floating nodes that have differ-
ent connections to the nodes in different parts. Notice that if a node
vj is assigned to P0 at the ith partitioning level, its coordinates (vi

xj,

vi
yj) will be (0, 0). Similarly a P1 assignment implies (vi

xj, vi
yj) will

be (1, 0) and so on. Shaded grids are the sub-parts to which the
floating nodes must be fixed during the remaining partitioning
stages. A floating node may have more than one choice of sub-part
to be fixed to. The selection of sub-parts is then based on the crite-
rion of maintaining the size balance.To better understand the pur-
pose of pre-locking, we provide an example which is depicted in
Figure 5. Suppose that after the first three levels of partitioning,
node vi has been assigned to the part that is shown in Figure 6. At

that time, the position vectors of vi are Vi
x = [0, 1, 1, -, -, ..., -] and

Vi
y = [1, 0, 0, -, -,..., -], where “-” denotes an indeterminate value. If

vi is a floating node and is required to be assigned to the center of
the whole layout area, vi is always fixed to sub-part P1 in the
remaining partitioning stages. The pre-locking procedure will
therefore set Vi

x to [0, 1, 1, 1, 1, ..., 1] and Vi
y to [1, 0, 0, 0, 0,..., 0]

before the next partitioning stage begins.
The detailed placement after the partitioning stages is deter-

mined by solving a quadratic optimization procedure as will be
detailed later.
3. Formulation
The objective function f(X, Y) for the partitioning process is modi-
fied by mapping the variables in TPIQ from one-dimensional space
to two-dimensional space:

,

, , xi ∈ X, yi ∈ Y.

cij
x and cij

y are the edge weights for the edge (vi, vj) in x-coordi-
nate and y-coordinate respectively. cmax

x and cmax
y are the edge

weights between a circuit node and a fixed dummy node when the
circuit node is anchored to that fixed node. The method for calculat-
ing the edge weights is the same as in [13].

The constraints are formulated as follows.
Cutting Policy Constraints
These constraints attempt to limit from above the number of times a
path is cut.

For every node in the circuit, we formulate the timing relation
by using the block-oriented timing analysis algorithm of [14]. The
arrival time bi is defined as the maximum number of cuts for all
paths from a primary input (or an output of a register) to the node vi.

bi + |xj - xi| + |yj - yi| ≤ bj, ∀ (vi, vj) ∈ E,
bi = 0, if vi ∈ {primary inputs or output of registers},
bj = PCG, if vj ∈ {primary outputs or input of registers},

where PCG is a user-defined value which specifies the maximum
number of cuts allowed for paths from any input node to the output
node vj.

The cutting policy for a critical path L is formulated as

, ∀ path L ∈ η.

The PCL of a critical path depends on the I/O pin positions of
that path, which is specified by the user. Also note that the left hand
side of the above inequality is not necessary an integer. It will how-
ever converge to an integer as the optimization process progresses.

(x, y)=(0,0) (x, y)=(1,0)

 (x, y)=(0,1) (x, y)=(1,1)

P0 P1

P2 P3

Figure 3. The four quadrants of a quadrisection
and their (x, y) encodings.

 •

•

•

•

• •

(a)

(b)

floating

P0 P1

P2 P3

•

•

•

(c)

node

Figure 4. Illustration of pre-locking mechanism.

nodes converge to P1

placement viewpartitioning view

• •

•

•

 (d)

•

• •

• •

(e)

placement viewpartitioning view

1
2
--- cij

x
xi x j–()2

xi x j, X∈
∑ 1

2
--- cij

y
yi y j–()2

yi y j, Y∈
∑+

cmax
x

+ xi 0–()
vi P0 P2,∈

∑ 1 xi–()
vi P1 P3,∈

∑+

cmax
y

yi 0–()
vi P0 P1,∈

∑ 1 yi–()
vi P2 P3,∈

∑++

0 xi 1≤ ≤ 0 yi 1≤ ≤

Vi
x=[0, 1, 1, -, -, ..., -]

Vi
y=[1, 0, 0, -, -, ..., -]

•vi

Figure 5. Explanation of the position vector.

xi x j– yi y j–+
vi v j,() L∈

∑ PCL≤

Capacity Constraints
Let s(vi) denote the size of node vi. Sk(vi) = Σks(vi) denotes the sum-
mation of node sizes in a sub-part pk ∈{ P0, P1, P2, P3}. Then we
have the following capacity constraints:

Lower bound ≤ Sk(vi) ≤ Upper bound, ∀ pk ∈{ P0, P1, P2, P3}.

Binary Boundary Constraints
, , ∀ xi ∈ X and yi ∈ Y.

Pre-locking Constraints
In addition to the primary input nodes and the primary output

nodes whose pin locations are specified, the position vector Vi
x or

Vi
y of some floating nodes have to be determined and locked. The

pre-locked values in Vi
x and Vi

y of primary I/O nodes and floating
nodes are transformed into constraints by setting

xi = 1 (or 0) if vi is pre-locked to sub-parts P1 or P3 (P0 or P2),
or it is fixed to the right (or left) side of a
part,

yi = 1 (or 0) if vi is pre-locked to sub-parts P2 or P3 (P0 or P1),
or it is fixed to the top (or bottom) of a part,

xi = 1 (or 0) and yi = 1 (or 0) if vi is pre-locked to a specific
part.

Detailed Placement
The final implementation of the partitioning process is a global
allocation of circuit components. To assign the circuit components
to detailed positions, we first calculate the coordinates of every part
pk in the whole layout area. Let the range of x-coordinates of pk be
denoted by [xL

k, xR
k] and the range of y-coordinates be denoted by

[yB
k, yU

k]. The detailed locations of circuit components are deter-
mined by solving the following quadratic formulation:

minimize f(X, Y) =
subject to

1. center of mass constraints

,

, for every node vi∈ pk.

where () is the center of mass of a part pk.

, .

2. boundary constraints

,

3. pre-locking constraints

if vi is pre-locked to left side of part pk

(sub-parts P0 or P2 of pk).

if vi is pre-locked to bottom side of part

pk (sub-parts P0 or P1 of pk).

if vi is pre-locked to right side of part

pk (sub-parts P1 or P3 of pk).

if vi is pre-locked to top side of part pk

(sub-parts P2 or P3 of pk).
where µ is a user-specified values.

The adjacency matrix Q in the objective function is obtained
by setting the edge weight of a net nj as . A linear assignment

is applied row by row to eliminate the overlap based on the solu-
tions of the quadratic programming.

Terminal Propagation
Terminal propagation is an important operation in all partitioning-
based placement algorithms because it allows for the effect of plac-
ing components in same part to influence the placement of compo-

nents in the subsequently processed parts. A terminal propagation
solution obtained at the earlier partitioning stage tends to bias the
solution of the succeeding partitioning stages. The traditional termi-
nal propagation deals with the problem of wire-length minimization
only. It does not consider the problem of delay minimization. Ter-
minal propagation without considering path delays may however
result in a longer circuit delay in the quadrisection placement con-
text. In TPIQ_P, the positions of terminal propagation pins are cal-
culated immediately after a partitioning step is finished. If a critical
path L ∈ η is cut, we identify the nodes which belong to the path L.
We then compute the center of mass of these nodes and let the ter-
minal propagation pins be locked to a sub-part which is close to this
center. To better illustrate the process, let’s consider the example in
Figure 6. In Figure 7-a, a partitioning step assigns nodes a, b, and c
to parts P3, P1, and P0, respectively. Since the critical path <a-b-c>
is cut, we calculate the center of mass of these three nodes, which
happens to be the center of the chip. Now consider terminal propa-
gation of node a. This node is placed in part P3 which itself has four
sub-parts P0, P1, P2 and P3. Sub-part P0 of part P3 is closest to the
center of mass of <a-b-c>, hence node a will be propagated to the
middle of the bottom face of sub-part P0 of part P3. Similarly, node
c will be propagated to the middle of the right face of sub-part P3 of
part P0. In fact, we pre-lock the terminal propagation pin of (a, b)
and the terminal propagation pin of (b, c) to subparts P0 and P3,
respectively in all subsequent partitioning stages.

4. Experimental Results
TPIQ_P was implemented on a Sun Ultra Sparc II machine. In our
experimental simulation, we first ran timing analysis and sought out
the first 250 longest paths by using Dreyfus’s method [15] to pro-
duce the longest path set. Then the paths whose path delays were
smaller than 0.9dlongest were deleted from the longest path set. All
nets in the critical path set along with those nets whose fanout count
exceeded 30 pins formed the initial critical net set. As the partition-
ing stages proceeded, the newest cut nets were added into the criti-
cal net set. TPIQ Phase I was replaced by hMeTis [16] in the
simulation to reduce the run time. We adopted the same parameters
used by Timing-QUAD [10] which is a partitioning-based timing-
driven placement system. We ignored nets which have 200 or more
output pins. From our experience with TPIQ, setting PCG to 2 for
general paths in sequential circuits is a good choice for circuit
bipartitioning. Similarly, a reasonable PCG is 4 for the quadrisec-
tion partitioning. Our experiments showed that when PCG was
decreased to 3, a large number of floating nodes were generated and
the size balance between parts became difficult to maintain. The
cutting policy for critical paths was the same for all the bench-
marks. The maximum number of edge-cuts allowed for a critical
path depends on its I/O pin positions. If both the input and output
pins are fixed on the top or bottom side, we set PCL of the path to 3.
If one I/O pin is on top and one is on bottom, then PCL=1. For other
situations, we used PCL=2. The capacitance per wire length is 242
pF/m and the resistance per wire length is 25.5kΩ/m in our simula-
tion. The threshold value τ was 64 and µ is 0.1.

Table 1 shows results of comparing our approach with Timing-
QUAD. The values in parentheses are the longest logic path delay
in the circuit. Because there may have some differences between

0 xi 1≤ ≤ 0 yi 1≤ ≤

X
T

QX Y
T

QY+

1
pk

--------- xi
xi pk∈
∑ xn=

1
pk

--------- yi
yi pk∈
∑ yn=

xn yn,

xn

xL
k

xR
k

+

2
------------------= yn

yB
k

yU
k

+

2
-------------------=

xL
k

xi xR
k≤ ≤ yB

k
yi yU

k≤ ≤

xL
k

xi xL
k µ+≤ ≤

yB
k

yi yB
k µ+≤ ≤

xR
k µ– xi xR

k
≤ ≤

yU
k µ– yi yU

k≤ ≤

1 n j⁄

• •

•

• •

•
Ο
•

•

Ο
•

•Ο

Ο

•

•

ο

ο

ο
ο

(a)

(b)

 (c)

(d)

•

••

ο
ο

•

ο
ο

•

••

ο
ο

•

•

ο
ο

•

••

(e)

 (f)

 (g)

(h)

d

 a

bc

placement approach (a)-(d) and in TPIQ_P
Figure 6. Terminal propagation in non-timing-driven

center of mass of
node a, b, and c

(e)-(h).

Timing-QUAD and TPIQ_P in transforming benchmarks, the maxi-
mum logic path delays were somewhat different. However, the dif-
ference does not affect the comparison. From the table we can see
that our approach has smaller circuit delays for all tested bench-
marks. Although TPIQ_P does not run timing analysis iteratively, it
still outperforms Timing-QUAD by an average of 23.41% in terms
of circuit delay. The runtimes of TPIQ_P are reasonable, for exam-
ple, the runtime for biomed is 2016 second and 12970 second for
avq.small on a Sun Ultra Sparc II.

We also report the results of TPIQ_P for different PCG’s in
Table 2. The PCG in column 5 is ∞, which means that we updated
the weights of critical nets but did not run TPIQ Phase II in this
case. As we can see, smaller PCG always results in better perfor-
mance. However, PCG cannot be reduced indefinitely. A value of 4
appears to be reasonable.

We also compare the performance of our approach (PCG=4) to
that of Eisenmann’s method [9]. In order to coincide with the delay
calculation method used in [9], we measured the net length with
Steiner tree as [9] did and calculate the exploitation rate E which is
defined as follows:

E = (delay without timing-driven feature - delay with timing-
driven feature) / (delay without timing-driven feature - longest
intrinsic path delay feature)

The exploitation rate E indicates how close the results of a tim-
ing-driven placement is to its the best possible solution for the
placement problem. The comparisons are shown in Table 3.
TPIQ_P is superior to Eisenmann’s method in all testing cases.

5. Conclusion
We presented TPIQ_P, a new timing-driven placement algorithm
based on iterative timing-driven partitioning with dynamic control
of the number of times a set of potentially critical paths are cut. The
proposed algorithm does not rely on interleaved timing calculations
which tend to be inaccurate. Instead it maintains timing-aware
placement by paying attention to how many times a path is cut by
the cut-lines. Experimental results showed the effectiveness of the
proposed approach in improving the delays of MCNC benchmarks
compared to the other timing-driven placement algorithms.

Future work will focus on incorporation of partitioning algo-
rithms that account for other objectives such as congestion and
routability in addition to timing. This is specially important during
the early partitioning steps. The later partitioning may remain as
they are now.

Reference
[1] A. E Dunlop, V. D. Agrawal, D. N. Deutsch, M. F. Jukl, P. Kozak,

and M. Wiesel, “Chip Layout Optimization using Critical Path
Weighting,” Proc. 21st ACM/IEEE Design Automation Conference,
pages 133-136, 1984.

[2] M. Burstein and M. N. Youssef, “Timing Influenced Layout
Design,” Proc. 22nd ACM/IEEE Design Automation Conference,
pages 124-130, 1985.

[3] R. S. Tsay and J. Koehl, “An Analytic Net Weighting Approach for
Performance Optimization in Circuit Placement,” In Proc. 28th
ACM/IEEE Design Automation Conference, pages 636-639, 1991.

[4] P. Hauge, R. Nair, and E. Yoffa. “Circuit Placement for Predictable
Performance,” In Proc. IEEE Int’l Conf. on Computer-Aided
Design, pages 88-91, 1987.

[5] W. E. Donath, R. J. Norman, B. K. Agrawal, S. E. Bello, S. Y. Han,
J. M. Kurtzberg, P. Lowy, and R.I. McMillan, “Timing Driven
Placement Using Complete Path Delays,” In Proc. 27th ACM/IEEE
Design Automation Conference, pages 84-89, 1990.

[6] M. A. B. Jackson and E. S. Kuh, “Performance-Driven Placement
of Cell Based IC’s,” In Proc. 26th ACM/IEEE Design Automation
Conference, pages 370-375, 1989.

[7] A. Srinivasan, K. Chaudhary, and E. S. Kuh, “RITUAL: A Perfor-
mance Driven Placement Algorithm,” IEEE Trans. on Circuits and
Systems-II: Analog and Digital Signal Processing, Vol. 39, No. 11,
pages 825-840, November 1992.

[8] B. M. Riess and G. G. Ettelt, “SPEED: Fast and Efficient Timing
Driven Placement,” In Proceedings of the IEEE International Sym-
posium on Circus and System, pages 377-380, 1995.

[9] H. Eisenmann and F. M. Johannes, “Generic Global Placement and
Floorplanning,” In 35th Proceedings of the ACM/IEEE Design
Automation Conference, pages 269-274, 1998.

[10] D. J. Huang and A. B. Kahng,. “Partitioning-Based Standard-Cell
Global Placement with an Exact Objective,” In ACM/IEEE ISPD,
page 18-24, 1997.

[11] W. Swartz and C. Sechen. “Timing Driven Placement for Large
Standard Cell Circuit,” In 32nd Proceedings of the ACM/IEEE
Design Automation Conference, pages 211-215, 1995.

[12] J. Rubinstein, J. Paul Penfield, and M. A. Horowitz, “Signal Delay
in RC Tree Networks,” IEEE Transactions on Computer-Aided
Design, vol. CAD-2, no. 3, pages 202-211, 1983.

[13] S. Ou and M. Pedram. “Timing-Driven Bipartitioning with Replica-
tion Using Iterative Quadratic Programming”. Proc. of Asia and
South Pacific Design Automation Conference. pages 105-108, Feb.
1999.

[14] R. B. Hitchcock, G. L. Smith, and D. D. Cheng. “Timing Analysis
of Computer Hardware,” IBM Journal of Research and Develop-
ment, 26(1), pages 100-105, 1983.

[15] S. E. Dreyfus, “An Appraisal of Some Shortest-Path Algorithms,”
Operation Research, Vol. 17, pages 395-412, 1969

[16] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. “Multilevel
Hypergraph Partitioning: Application in VLSI Domain,” In Proc.
34th ACM/IEEE Design Automation Conference, pages 526-529,
1997.

Table 1: Comparison of circuit delay for TPIQ_P and
Timing-QUAD

Benchmark # cell # net
Timing-
QUAD

TPIQ_P Impr.

fract 125 147 18.4
(10.6)

11.91
(11.56)

35.27%

struct 1888 1920 79.3
(40.0)

55.51
(48.71)

30.00%

biomed 6417 5742 29.3
-

20.27
(14.20)

30.82%

avq.small 21854 22124 71.0
(37.3)

59.65
(36.85)

15.99%

avq_large 25114 25384 76.9
-

73.07
(46.44)

4.98%

Average 23.41%

Table 2: Comparison of different upper bound on
cuts for TPIQ_P

Benchmark PCG= 4 PCG = 8 PCG = 10 PCG = ∞

fract
Impr. to PCG=4

11.91
-

12.77
6.73%

12.77
6.73%

12.77
6.73%

struct
Impr. to PCG=4

55.51
-

55.60
0.16%

55.61
0.17%

55.69
0.32%

biomed
Impr. to PCG=4

20.27
-

20.52
1.22%

20.53
1.26%

21.11
3.98%

avq.small
Impr. to PCG=4

59.65
-

61.98
3.76%

66.19
9.88%

71.21
16.23%

avq_large
Impr. to PCG=4

73.07
-

74.19
1.51%

78.32
6.70%

89.24
18.11%

Avg. in Impr. - 2.68% 4.95% 9.08%

Table 3: Comparison of TPIQ_P with Eisenmann’s
method

Benchmark
E of Eisenmann’s

method
E of TPIQ_P

fract 51% 93%

struct 28% 32%

biomed 59% 87%

avq.small 68% 82%

avq_large 57% 87%

Average 53% 76%

