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INTRODUCTION

• PLLs are ubiquitous in RF and mixed signal circuits

• The phase-lock concept is fundamental in any
situation where some form of feedback is used to
synchronize some local periodic event with some
observable external event

• Most high-speed microprocessors and memories
employ phase locking to suppress timing skews

PLL APPLICATIONS

• Clock and data recovery
• Clock generation for microprocessors
• Frequency synthesis
• Demodulation of FM signals
• Coherent demodulation of AM signals
• Local oscillator design for cellular phones, cable

modems, and radios
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PLL DESIGN SPECIFICATIONS

!Cycle-to-cycle jitter:
1TT ∆+ 2TT ∆+

• Lock range

• Capture range

• Acquisition time

• Jitter

• The PLL timing jitter can cause serious problems in a
system which uses the PLL
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PRIOR WORK

• Oscillator phase noise due to the device noise
– Using an LTI feedback system approach to analyze

the phase noise (Razavi, JSSC’96)
– Using an LTV model and stochastic differential

equations to analyze the phase noise (Hajimiri,
JSSC’98) (Demir, DAC’98)

• Oscillator jitter due to power supply noise
– Using a deterministic frequency modulation model

(Hertzel, CICC’98)
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NOISE SOURCES IN PLL

KDfpd(.) L(n)[vLP] = L(m)[vPD]

KD ∫t (.)M÷

Input

Phase Detector Low-pass Filter

VCO
Frequency

Divider VCO phase noise

Input noise

01

1

1
)( ... b

dt
db

dt
dbL m

m

mm

m

m
m +++= −

−

−

01

1

1
)( ... a

dt
da

dt
daL n

n

nn

n

n
n +++= −

−

−

POWER SUPPLY NOISE

Impulsive noise Sinusoidal noise
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MODELING THE SINUSOIDAL NOISE

• When a large decoupling capacitor is present in the
circuit, the supply noise is modeled as a sinusoidal
waveform with a random maximum amplitude and a
uniformly distributed random phase shift in

[−π , π]
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MODELING THE IMPULSIVE NOISE

PLL

lpwr1

lpwr2

lpwr3

lgnd1

lgnd2

lgnd3

G1

G2

GN

....

t

Vclk

t
∆Vn

Vn,max[1]
Vn,max[2]
Vn,max[3]

Small
decoupling
capacitance

GndGd tt ,1, ... ≠≠

τ[1].tr τ[2].tr τ[3].tr

).][
(][)(

0
max,

rk
nn tk

TkttrpzkVtv τ
−=∑

∞

=
where

trpz(t)

t
tr

1

Vn,max[k] and τ[k] are independent stochastic processes.
TktkT )1( +≤≤



6

• The pulse width of the supply noise is very small
compared to the clock period
Vclk ,

t
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• When a small decoupling capacitor is present in the
circuit, the power supply noise is modeled as an
impulse train with a uniformly-distributed random shift
in [0 , tr] and normally distributed random amplitude
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MODELING THE IMPULSIVE NOISE

• s(t) is a wide-sense cyclo-stationary stochastic
process

Theorem:

If s(t) is a cyclo-stationary process and λ is a uniformly
distributed random variable in the interval [0 , tr] and
independent of s(t), then the process:

vn(t) = s(t - λ)

is a stationary process with the following statistics:
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MODELING THE IMPULSIVE NOISE
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PHASE NOISE OF THE VCO

• A VCO implemented as a five-stage fully differential
ring oscillator exhibits good current-frequency
linearity
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• The VCO excess frequency is calculated as:

Using BSIM3v3 MOS model

PHASE NOISE OF THE VCO

• The phase noise of the VCO is:
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• The autocorrelation of ∆ f (t) is a linear function of the
autocorrelation of vn
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TIMING JITTER OF THE VCO

• The timing jitter of the VCO is the standard deviation
of the timing uncertainty:
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• Assume that the loop filter is narrowband. Hence the
PLL transfer function exhibits a dominant pole
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PLL TIMING JITTER (cont’d)
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PHASE-FREQUENCY DETECTOR

• Does not suffer from false lock

• The input signal and the VCO output are exactly in phase

• The lock is attained very quickly
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CHARGE-PUMP CIRCUIT

• The zero introduced by the resistor causes a smooth and non-
oscillatory transition.

• The glitch produced by the voltage drop across resistor is
dampened by a 0.2pF capacitor
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VOLTAGE-CONTROLLED OSCILLATOR

The wide-swing cascode current tail:

1. increases the Power-Supply Rejection Ratio (PSRR)

2. protects the VCO frequency from the supply variations
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DESIGNOF BANDGAP REFERENCE

• The circuit generates a fixed 0.8V
• It exhibits 0.88% variation in response to a

temperature variation of 10-130°C and 0.37%
variation in response to a supply variation of 1.8-3.2V
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EXPERIMENTAL SETUP
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CONCLUSION

• A mathematical model for calculating the power supply
noise induced timing jitter in PLLs was presented

• The model relies on the stochastic modeling of the
power supply noise

• The effect of the power supply noise on the phase
noise of the VCO was analyzed and expressed in
closed form

• The PLL timing jitter was determined using the phase
noise of the VCO

• A PLL was designed and our mathematical model was
utilized to predict the timing jitter

• Experimental results show the accuracy of our model


