Architectural Power Optimization by Bus Splitting

Massoud Pedram
Cheng-Ta Hsieh
Verplex System
Dept. of EE-systems
University of Southern
California

Outline

* Prior Work
$\$$ Shared Bus v.s. Point-to-Point Connection
* Power Model and Examples
* Algorithm
* Summary

Prior Work

*Low Voltage Swing [Nakagome, '93]
\$ Bus Encoding
Bus-Invert Code for Data Bus [Stan, '95]

- Uses INV line to dynamically signal the receiver that the transmitted data is inverted Gray Code for Address Bus [Su,'94]
- Arranges the program in gray code order

TO Code for Address Bus [Benini,'97]

- Uses redundant line INC to auto-increment address for consecutive accesses

Shared-Bus Architecture

4 Advantage
Simple topology
Lower area cost
Extensibility
4 Disadvantage
Larger load per data-bus line
Longer delay for data transfer
Larger power consumption
Lower bandwidth

Point-to-Point Connection

4 Pros
Smaller load per bit
Speed and power
4 Cons
High area cost
Routability

Monolithic-Bus Architecture

Split-Bus Architecture

Benefits of Split Bus Architecture

*Smaller parasitic load
\& Larger timing slack
\& Smaller driver size
\& Lower power consumption

* Lower noise problems

Probabilistic Power Model of Driver

$$
\begin{aligned}
& s w\left(V_{p}\right)=2 \operatorname{prob}(\text { in }) \operatorname{prob}(o e)[1-\operatorname{prob}(\text { in }) \operatorname{prob}(o e)] \\
& \operatorname{sw}\left(V_{n}\right)=2 \operatorname{prob}(\text { in }=0) \operatorname{prob}(o e)[1-\operatorname{prob}(\text { in }=0) \operatorname{prob}(o e)] \\
& E_{d r i v e r}=0.5\left(s w\left(V_{p}\right) C_{e f f, b u f p}+\operatorname{sw}\left(V_{n}\right) C_{e f f, b u f n}\right) V_{d d}^{2}
\end{aligned}
$$

Accurate Power Model of SplitBus

$4 V_{B U S 1, i}$: logic value on bus1 at clock cycle i
4 at clock cycle $i, M_{S R C(i)}$ sends data to $M_{D S T(i)}$
$V_{B U S 1, i} \quad=V_{B U S 1, i-1} \quad$ if $M_{S R C(i)} \notin B U S 1$ and $M_{D S T(i)} \notin B U S 1$
$V_{B U S 2, i}=V_{B U S 2, i-1} \quad$ if $M_{S R C(i)} \notin B U S 2$ and $M_{D S T(i)} \notin B U S 2$ $=V_{i} \quad$ otherwise
$E=E_{B U S 1}+E_{B U S 2}+E_{\text {driver }}$
$\left.=0.5 C_{B U S 1} \sum_{i=1}^{p}\left(V_{B U S 1, i-1} \oplus V_{B U S 1, i}\right) \frac{V_{d d}^{2}}{p}+0.5 C_{B U S 2} \sum_{i=1}^{p}\left(V_{B U S} 2, i-1\right) \oplus V_{B U S 2, i}\right) \frac{V_{d d}^{2}}{p}$
$+\sum_{i=1}^{n} E_{\text {driver, Mi }}+E_{\text {driver, BUF } 1}+E_{\text {driver, BUF } 2}$

Probabilistic Power Model of Bus

$4 \times \mathrm{xfer}(\mathrm{BUS} 1, \mathrm{BUS} 2)$
probability of bus1 transferring data to bus2

+ prob(BUS1)

the probability for the bus1 having a logic value ' 1 ' in a clock cycle
$s w(B U S 1)=2 \operatorname{prob}(B U S 1)[1-\operatorname{prob}(B U S 1)] x f e r(B U S 1)$
$s w(B U S 2)=2 \operatorname{prob}(B U S 2)[1-\operatorname{prob}(B U S 2)] x f e r(B U S 2)$

$$
\begin{aligned}
E= & 0.5\left(C_{B U S 1} s w(B U S 1)+C_{B U S 2} S w(B U S 2)\right) V_{d d}^{2} \\
& +\sum_{i=1}^{n} E_{d r i v e r, M i}+E_{d r i v e r, B U F 1}+E_{d r i v e r, B U F 2}
\end{aligned}
$$

Simple Power Model for Examples

*Monolithic Bus
$E 1=0.5 \cdot s w \cdot C_{B U S} V_{d d}^{2}$
\$ Split Bus (assume all data has same sw)
bus1
bus2
$E 2=0.5 V_{d d}^{2}\left[s w \cdot C_{B U S 1} \sum_{i \in B U S 1} \sum_{1 \in B U S \mid, i \neq j} x f e r\left(M_{i}, M_{j}\right)+C_{B U S 2} \sum_{i \in B U S 2} \sum_{j \in B U S 2, i \neq j} x f e r\left(M_{i}, M_{j}\right)\right.$
$\left.+\left(C_{B U S 1}+C_{\text {BUS2 } 2}\right) \sum_{i \in B U S 1} \sum_{i \in B U S 2} x f e r\left(M_{i}, M_{j}\right)+\left(C_{B U S 1}+C_{B U S 2}\right) \sum_{\substack{\text { busUSS } 2 \\ j \in B U S 1->b u s 2}} \sum_{\substack{ \\\text { bus2->bus1 }}} x f e r\left(M_{i}, M_{j}\right)\right]$
*Voltage and Capacitive Load

$$
V_{d d}=\frac{C_{B U S 1}}{|B U S 1|}=\frac{C_{B U S 2}}{|B U S 2|}=\frac{C_{B U S}}{n}=1
$$

Example 1

* 6 modules, $\operatorname{xfer}\left(M_{j} M_{j}\right)=1 / 6(6-1)=1 / 30$

$$
E 1=0.5 \cdot(6 \cdot 0.5)=1.5
$$

$$
\begin{aligned}
& E 2=0.5\left(\frac{1}{5} \times 3 \times 0.5+\frac{1}{5} \times 3 \times 0.5\right. \\
& \left.+\frac{3}{5} \times 6 \times 0.5\right)=1.2 \\
& \text { inter-bus }
\end{aligned}
$$

Example 2

+ Homogeneous transfer probabilities
$\square 2 k$ modules
- |BUS1|=k-a, |BUS2|=k+a
$-\operatorname{xfer}\left(M_{i}, M_{j}\right)=1 / 2 k(2 k-1)$
+ Results

$$
\begin{aligned}
& E 1=0.5 \cdot(2 k \cdot 0.5)=0.5 k \\
& E 2=0.25 \frac{3 k^{3}-k^{2}+a^{2}(k-1)}{2 k^{2}-k} \\
& \frac{E 1-E 2}{E 1}=0.5 \frac{k^{3}-k^{2}-a^{2}(k-1)}{2 k^{3}-k^{2}} \quad \begin{array}{l}
k=2, a=0, \text { power saving }=16 \% \\
k \rightarrow \infty, a=0, \text { power saving }=25 \%
\end{array}
\end{aligned}
$$

Example 3

Architecture	Energy
BUS=\{M1,M2,M3,M4\}	1
$\begin{aligned} & \begin{array}{l} \text { BUS1 }=\{\mathrm{M} 1, \mathrm{M} 2\} \\ \text { BUS2 } \end{array}=\{\mathrm{M} 3, \mathrm{M} 4\} \end{aligned}$	0.75
$\begin{aligned} & \hline \text { BUS1 }=\{\mathrm{M} 1, \mathrm{M} 3\} \\ & \text { BUS2 }=\{\mathrm{M} 2, \mathrm{M} 4\} \end{aligned}$	0.875
$\begin{aligned} & \left.\begin{array}{l} \text { BUS1 }=\{\mathrm{M} 1, \mathrm{M} 4\} \\ \text { BUS2=} \end{array} \mathrm{M} 2, \mathrm{M} 3\right\} \end{aligned}$	0.875

Example 4

un-labeled probabilities $=1 / 64$

Bus-Splitting with Fix Module Order

*Calculate the switching activities of the data on bus1 and bus2 for each possible buffer positions at segment $i, i=2 \ldots n-2$.

* Calculate energy consumption $E(i)$ for buffer position at segment $i, i=2 \ldots n-2$.
* Find the minimum E (i)

4 Complexity: O(num_of_clock_cycles x n)

Bus-Splitting with Arbitrary Module Order

\& NP-hard Problem
The problem is equivalent to 'minimum cut into two bounded sets' by converting $x f e r\left(m_{i}, m_{j}\right)$ to weights in the graph

+ Solutions Space
Number of feasible splitting: $2^{n-1}-1$
* Probabilistic power model can be used to speed up the searching

In practice, $n<=30$ can be solved efficiently

Exact Algorithm

\# For each possible order, find optimal buffer position with fix-module-order algorithm

* If all the data transition is uncorrelated, the previous algorithm can be sped up to $O\left(n^{2}\right)$ by only calculating the energy difference in adjacent buffer positions
\& If n is too large, heuristic algorithm can be applied to cluster modules first

Heuristic Algorithm

\& Clustering
Maximize the intra-transfer probability in each cluster

Avoid big cluster size (example 4)
Recursive max-weight matching is used.
*After Clustering, the effective number of modules is reduced. Then the exact algorithm is applied.

Topology Variation

*T-Shaped Bus

Topology Variation (cont'd)
\& H-Shaped Bus

Experimental Results

Each point shows the average power saving of the split bus over the monolithic bus for 500 randomly generated test cases under different distributions.

Summary

\$ Split bus can improve timing and power dissipation for on-chip data exchange

* Split bus can save up to 50% power
*T-shaped and H -shaped can further improve the bus performance
* Multi-way splitting can be used if a large number of modules are connected to a shared bus

