Dynamic Voltage and Frequency Scaling Under a Precise Energy Model Considering Variable and Fixed Components of the System Power Dissipation

> Kihwan Choi Won-bok Lee Ramakrishna Soma Massoud Pedram

University of Southern California

Outline

- Background
- Workload decomposition
 - Execution time model
 - System energy model
- Fine-grained DVFS policy
- Experimental results
- Conclusion

DVFS for the minimal system energy

Two requirements

- Satisfy timing constraint
- Minimize the system energy

Timing constraint

- Different applications exhibit disparate execution time variation as a function of the CPU frequency change
- Accurate modeling of the task execution time as the CPU frequency is varied

Minimal system energy

- Power consumption of each system component should be known
- Info. about each component state, i.e., active or idle is required
- These two requirements can be satisfied by using the "workload decomposition" approach

 Frequency settings in BitsyX PXA255 can operate from 100MHz to 400MHz, with a core supply voltage of 0.85V to 1.3V Internal bus connects the core and other functional blocks inside the CPU External bus is connected to SDRAM (64MB) Nine frequency combinations (<i>f cpu</i>, <i>f int</i>, <i>f ext</i>) 						
	Freg Set	f cpu [MH7]	v rvi	f int [MHz]	f ext [MH7]	
	1109.000		[♥] cpu L ♥ J	, [ivii iz]	, [ivii iz]	
	F ₁	100	0.85	50	100	
	F ₂	133	0.85	66	133	
	F ₃	200	1.0	50	100	
	F_4	200	1.0	100	100	
	F ₅	265	1.0	133	133	
	F_6	300	1.1	50	100	
	F ₇	300	1.1	100	100	
	F ₈	400	1.3	100	100	
	F ₉	400	1.3	200	100	

 The average error in predicting the execution time was less than 2% for all nine frequency settings

