
An Energy-Efficient, Yet Highly-Accurate, Approximate Non-
Iterative Divider

Marzieh Vaeztourshizi1, Mehdi Kamal2, Ali Afzali-Kusha2, Massoud Pedram1

1Ming Hsieh Department of Electrical Engineering, University of Southern California, USA
2 School of Electrical and Computer Engineering, University of Tehran, Iran
vaeztour@usc.edu, mehdikamal@ut.ac.ir, afzali@ut.ac.ir, pedram@usc.edu

ABSTRACT
In1 this paper, we present a highly accurate and energy efficient
non-iterative divider, which uses multiplication as its main
building block. In this structure, the division operation is
performed by first reforming both dividend and divisor inputs, and
then multiplying the rounded value of the scaled dividend by the
reciprocal of the rounded value of the scaled divisor. Precisely, the
interval representing the fractional value of the scaled divisor is
partitioned into non-overlapping sub-intervals, and the reciprocal
of the scaled divisor is then approximated with a linear function in
each of these sub-intervals. The efficacy of the proposed divider
structure is assessed by comparing its design parameters and
accuracy with state-of-the-art, non-iterative approximate dividers
as well as exact dividers in 45nm digital CMOS technology.
Circuit simulation results show that the mean absolute relative
error of the proposed structure for doing 1 32-bit division is less
than 0.2%, while the proposed structure has significantly lower
energy consumption than the exact divider. Finally, the
effectiveness of the proposed divider in one image processing
application is reported and discussed.

CCS CONCEPTS
• Hardware → Logic Circuits: Arithmetic and datapath circuits

KEYWORDS
Approximate Divider, Piecewise Linear Approximation, Low
Power, High Performance.

1. INTRODUCTION
With the growth of embedded and mobile devices, there is a high
demand for energy efficient and relatively high-performance
circuits. Moreover, due to increasing complexity of designs, higher
power dissipations and longer delays are expected. On the other
hand, there are many error resilient applications such as media
processing (graphics, images,), object recognition, and data
mining, which can accept a wide range of approximate results. The
main reasons for error resiliency in these systems are: (i) the
benefactors of these applications, humans, have imperfect
perceptions, (ii) there are no golden results to seek, or (iii) the input
to the system itself has redundancy or noise [1].
Consequently, exactness of computations may be abandoned in
favor of approximate results so as to improve the computational
speed and power efficiency of digital circuits and systems that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ISLPED ‘18, July 23-25, 2018, Seattle, WA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5704-3/18/07. . . $15.00
https://doi.org/10.1145/3218603.3218650

produce the said results. In this approach, which is commonly
known as approximate computing, hardware building blocks may
be simplified compared to the blocks performing exact
computations, resulting in more energy efficient, higher speed, and
lower area implementations [2]. An important application of
approximate computing is in arithmetic blocks, which consume a
large portion of the computing system power consumption [3].
Among the four basic arithmetic operations, the division operation
is a less frequently-used operation in executing most applications
[4]. However, when it is needed, it constitutes a costly operation
because of its high latency and power consumption. Therefore,
improving computational speed and reducing energy consumption
of a divider block is very important in designs that perform the
division operation [5].
The division operation can be performed iteratively or non-
iteratively. Iterative division algorithms can themselves be
categorized into two main classes: digit recurrence methods and
functional iterative methods [6]. In digit recurrence algorithms, the
basic operation is the subtraction operation. The bits (digits) of the
quotient are obtained iteratively, one bit (digit) per step. Therefore,
these dividers are easy to implement, but also become slow. The
SRT division algorithm is the most frequently implemented
algorithm from this class of dividers [7]. The basic operation in
functional iterative algorithms is multiplication, where the
algorithm starts from an estimation, and then tries to converge to
the actual result. The Newton-Raphson algorithm [8] is one of the
most popular functional iterative methods. On the other hand,
division operation can be performed in one step by simplifying it to
a multiplication operation. In this division algorithm, the dividend
is multiplied by the reciprocal (inverse) of the divisor. Therefore,
the complex division operation is converted into a multiplication.
The challenge, of course, is to obtain the reciprocal of the divisor.
One solution is the use of the approximate computing paradigm to
determine an inexact value of the reciprocal of the divisor.
While many approximate designs have been suggested for adders
and multipliers ([9], [10]), designing approximate dividers
received limited attentions ([3], [11]). In this paper, we
propose a highly accurate yet energy efficient approximate divider,
which its computation core is based on multiplying the dividend by
the reciprocal of the divisor. This structure utilizes piecewise linear
approximation to calculate the reciprocal of the divisor. The
interval representing the divisor is partitioned into many equal-
width, non-overlapping sub-intervals, and the reciprocal is
approximated with a line in each of these individual regions. In this
structure, the dividend and the divisor are reformed, scaled and
rounded before calculating the reciprocal and performing the final
multiplication, leading to simplified hardware implementation. In
this work, the final division result is obtained by employing exact
multiplication, while one may use approximate multiplication as
well.
The rest of the paper is organized as follows. In Section 2, a
literature review on approximate dividers is provided. The
algorithm of the proposed divider and its hardware implementation
details are discussed in Section 3. In Section 4, the accuracy of the
proposed divider is compared with some prior approximate

dividers, while the design parameters and the efficacy of the
proposed structure in an image processing application are studied
in Section 5. Finally, the paper is concluded in Section 6.

2. Related Work
One basic method to design an approximate divider is to substitute
the hardware elements in the exact divider circuit with their
simplified blocks. For example, in reference [12] some circuit
blocks of the exact subtractor in a non-restoring divider are
replaced with approximate ones to improve the speed and reduce
the power consumption of the circuit. Another common technique
to improve the performance of an arithmetic operation is to
(dynamically) ignore the least significant bits of the operands,
which is called truncation. For example, in reference [2] the
dividend and the divisor are dynamically truncated to some number
of bits, and therefore, a smaller exact divider is employed to
perform a larger approximate division operation. There are some
state-of-the-art approximate dividers, which their structure is based
on multiplication of the dividend and the reciprocal of the divisor.
For example, in reference [3] an approximate divider called
SEERAD is presented, where the divisor (i.e.,) is rounded to the
nearest number in the form of , and the division
operation of is simplified to calculating the shifted value of

. In this equation, denotes the position of the leading one in
, while the tuple is determined for each group of values

to minimize the error of the division operation. The number of
groups shows the accuracy level of SEERAD. In reference [11], an
approximate divider structure, called TruncApp, is suggested,
where the input operands are both scaled to lie in the range of

 and then truncated down to a bit width of t (truncation
width). Next, using Taylor series expansion, the reciprocal of the
divisor is approximately calculated by inverting all the fractional
bits of the truncated value of the scaled divisor and concatenating a
“1” at its most significant position. As a result, the reciprocal will
lie in the range of . Finally, the truncated scaled dividend is
multiplied by the approximate reciprocal of the truncated scaled
divisor to yield the approximate quotient. When the truncated
lengths of the operands are increased beyond a relatively small
value say 4 bits, the accuracy of the divider starts to degrade. This
is due to the fact that the approximate reciprocal calculation yields
to less accurate results as its bit width is increased. This is a key
rationale behind our present work, which proposes a completely
different method of calculating the approximate reciprocal of the
divisor.
The idea of using curve fitting approaches for division was
suggested in [13] without suggesting a hardware implementation
for the division operation. In [14], the division operation is
simplified by fitting surfaces on the quotient. To improve the
accuracy, the quotient surface has been partitioned into different
regions, and a square or triangular plane is fitted to each of them.
This approach suffers from the need for huge look-up tables to store
all the required coefficients. In our work to be presented below, to
reduce the needed storage for curve fitting coefficients and also
enjoy the low complexity of multiplication-based division, we
suggest using piecewise linear approximation for determining the
reciprocal of the divisor.

3. Proposed Approximate Divider
An -bit unsigned integer number may be represented as

where is either zero or one, (which will be called the reformed
operand) is a fractional number between one and two, is the
fractional part of , and denotes the position of the leading one

in . Now, based on the reforming approach of (1), the division
operation (divided by) may be represented by

where , which its value lies in the range of , is the
reciprocal of the scaled divisor, . In this paper, we suggest
utilizing a piecewise linear curve fitting approach [13] to
approximate . Precisely, the interval representing may
be partitioned into many equal-width, non-overlapping sub-
intervals, and the reciprocal is approximated with a linear function
in each sub-interval. In this case, the reciprocal is obtained from

where denotes the index of the sub-interval where lies in. Note
that for simplicity, the rounded value of is multiplied by
coefficient The coefficients and are calculated with the
curve fitting and should be rounded to the nearest number based on
the considered width of operations. Evidently, the accuracy of the
estimated reciprocal is increased by utilizing higher number of sub-
intervals, however, this will also lead to higher power dissipation
and delay costs. In this paper, without loss of generality, we
consider three different sub-interval counts 2, 4, and 8 sub-
intervals. Figure 1 shows as a function of as well as
approximated under the said sub-interval counts. As the plots
show, the maximum error (2.87%) arises when range is
partitioned into two sub-intervals.
3.1. Hardware Implementation of the

Proposed Approximate Divider
Internal structure of the hardware implementation of the proposed
approximate divider is shown in Figure 2. The proposed structure
is like the one suggested in [11]. However, in our structure, the
inverse unit, which constitutes the core of the approximate division
operation, is completely changed to rely on piecewise linear
approximation method of [13]. Furthermore, a Rounding unit,
instead of a Truncation unit, is employed. These modifications lead
to superior accuracy of the proposed design compared to the one
suggested in [11]. The detailed explanation of each block is
provided in the next sub-sections. It should be mentioned that the
proposed structure supports unsigned division operation. To
support signed operation, before the division operation, the
absolute values of the input operands should be extracted, and the
division operation is performed based on the extracted absolute
values, and finally, the sign of the determined quotient should be
set according to the signs of the input operands.

Figure 1. (a) vs , (b) the region is partitioned into 2, (c) 4, (d)
8 sub-intervals and approximated with a straight line in each region

shown with the exact curve

L1D Unit Multiplexer Rounding
Unit

Inverse
Unit

Multiplier
UnitShift Unit

CC Block
n

n

Log(n)

n

n

r

r

R+r2r

A

B

KA

KB

kA

kB

fA

Log(n)

fB

fB,r

fA,r

Rounding
Unit

r

Q
2n-1+2r

Rounding
Unit

Rounding
Unit

XB

n

n

3.1.1. Leading One Detector Unit/ Code
Conversion Block/ Multiplexer
Inputs of the Leading One Detector (L1D) unit are the -bit
dividend and the -bit divisor, which are concurrently passed to this
unit. This unit has two outputs whose widths are the same as the
input widths. The two outputs specify the positions of the leading
one for each of the input operands. Thus, the binary representation
of each output has a “1” at the position of the leading one of its
corresponding input, while all other bits of the output are set to zero.
The output of the L1D unit goes into a Code Conversion (CC)
block, which in turn encodes the position of the leading one of the
input operand in bits. The output of the CC block for each
operand and the corresponding operand itself are then fed into a
multiplexer, which chooses the fractional part of the reformed
operand, i.e., in (1). As an example, if the dividend has an 8-bit
value of , the output of the L1D unit will be

, whereas the output of the CC block will be
Finally, the output of the multiplexer will be . Since
the fractional part of a reformed 8-bit operand has at most 7 bits, we
place a zero to the right side of this 7-bit fractional part to make it
an 8-bit one. Similarly, if the divisor is , the output of
the L1D unit will be , whereas the output of the CC
block will be Finally, the output of the multiplexer will be

.
3.1.2. Rounding Unit
To facilitate the division operation, only a subset of most significant
bits of fractional parts of both reformed operands are utilized in the
division operation. Therefore, we suggest to shorten the widths of
outputs of the Multiplexer unit to gain speed and power. One way to
choose the most significant bits of the operands is by truncation,
which was employed in [2]. However, the accuracy of rounding is
more than truncation, and the accuracy of the input operand of the
Inverse unit has a considerable impact on the final precision of the
division operation. Therefore, in this work, we employ a Rounding
unit, which rounds the operands to the nearest numbers. Outputs of
this unit are designated by , where denotes either dividend
or divisor and represents the bit width of the rounded output
(also called rounding width). In the previous example, the output of
the Multiplexer unit with the dividend as its input was

, which means that the fractional part of the reformed
operand has a value of (0.609375)10. The output of the Rounding
unit for the dividend with will be , which denotes a
decimal value of (0.625)10. On the other hand, the output of the
Multiplexer unit for the divisor was , which has the
decimal value of (0.328125)10, and the output of the Rounding unit
for the divisor with will be with the decimal value
of (0.3125)10. More generally, to perform the rounding operation,
first, the most significant bits of any input to the Rounding unit
are truncated; next if the bit of the input is one, the
truncated value is incremented by one, and this value is considered
as the output of this unit. However, if bit is zero, the
output will be simply the truncated value. The only exception for
this operation is when the truncated -bit value of the input of the
Rounding unit is and its bit is one. In this case,
incrementing the truncated value by one turns the rounding value

to be zero, which would not be a good approximation. To avoid
this, the Rounding unit will produce the truncated -bit operand
itself as its output. With respect to the above example for the
dividend and the divisor, because the 5th bit of the fractional part of
the reformed dividend is one, the output of the Rounding unit is

. However, for the divisor, the
output of the Rounding unit becomes the truncated value of

, as the 5th bit is zero. The internal structure of this unit is
depicted in Figure 3.

3.1.3. Inverse Unit Plus Second Rounding Unit
As mentioned before, in the proposed division algorithm, we
suggest using piecewise linear approximation to estimate the
reciprocal of the reformed divisor. Hence, the Inverse unit contains
two one-dimensional look-up tables (LUT) with entries each,
where is the selected number of equal-width, non-overlapping
sub-intervals. LUTα contains coefficients, whereas LUTβ
contains coefficients for the sub-intervals (see (3)). Indeed,

most significant bits of are used as the key to these
LUTs to get the stored coefficients. Since calculating may
be costly, we use the approach suggested in [14], and thus,
implement this multiplication as a series of add and shift
operations. For instance, to calculate , one needs to
just calculate . Therefore, instead of storing
values in the corresponding table, positional notation weights of its
binary representation digits are stored (e.g., 2 and 8 in the case of
0.625) in bits. To limit the required memory for weights, we
round the extracted to bits. This means that value of varies
from 0 to for a width of bits. Therefore, at most
distinct (power-of-two) weights are stored in each row of LUTα
using a bit vector of bits. In this work, a maximum number of
five distinct weights are sufficient to produce the required ,
which, as an example, corresponds to a case when eight non-
overlapping sub-intervals are selected and in . Therefore,
the size of LUTα is smaller than Since itself is
bits, will have bits. Thus, the bit width of must
be , resulting in bit storage size of for LUTβ.
Note that we normally set = , which means the total memory
needed for both LUTs is smaller than .
After fetching the proper coefficients from the LUTs, a multi-
operand adder is employed to find the inverse value of the input
operand. More precisely, Carry Save adders (CSA) are utilized to
repeatedly reduce maximum of six inputs, which are five shifted
values of and , to two outputs, and finally, a Kogge-Stone
adder is utilized to sum up these levels. It is worth mentioning that

 is always smaller than one, thus, no carry will be produced to
be considered as the integer part of the result. Finally, the bit
output of the Inverse unit goes into a second Rounding unit to
choose the most significant bits required for the multiplication
operation.
3.1.4. Multiplier Unit Plus Shift Unit
The last part of the division operation is to multiply the reciprocal
of the rounded value of the reformed divisor to the rounded value

ALU

0000...1

MUX
Truncation

r

rf[n-1:n-r]

f[n-r-1]

r

1

n

r

1

0

ALU+f[n-1:0]

fr [r-1:0]MUX
1

0

r+1
f[n-1:n-r-1]

f[n-1:0]
n

1

r

MUX

1

0

Figure 2. Hardware implementation of the proposed divider

Figure 3. The internal structure of the Rounding unit

of the reformed dividend. Here, an exact Wallace Tree Multiplier
is employed to perform the multiplication. Note that as mentioned
before, one may use approximate multiplication to improve the
performance at the cost of loss in computational accuracy. Finally,
the output of the multiplier and the position of the leading ones (
and in (2)) of the operands are passed to the Shift unit to
determine the final result. The Shift unit, based on the
value, shifts its input in a range of to bits.
Therefore, the resulting quotient () is a fixed-point number with
integer bits and fractional bits.

4. Accuracy of the Proposed Approximate
Divider
In this section, the accuracy of the proposed divider is studied and
compared with three state-of-the-art, non-iterative approximate
dividers including SEERAD [3], TruncApp [11] and the divider
proposed in [14]. The proposed divider, which we call Piecewise
Linear Approximate Divider or PLApp for short, has been
implemented with different number of sub-intervals (2, 4, and 8)
and rounding widths (4, 5, 6, and 8); Each approximate divider is
identified as PLApp(s,r), where refers to the number of
considered sub-intervals and denotes the rounding width. In the
case of SEERAD, four accuracy levels were considered, which are
indicated by SEERAD(), where shows the accuracy level. In
the case of TruncApp divider, four truncation widths have been
considered, which are denoted by TruncApp(), where shows the
considered truncation width. In the implementation of TruncApp,
for a fair comparison, we employed exact multiplier similar to our
structure. Finally, in the case of the divider proposed in [14], in the
implemented structure, the scaled operands were rounded to the
nearest number, and the plane representing the scaled quotient was
partitioned into squares. The hardware implementation of
this divider was the same as the proposed divider, while the inverse
unit in this structure calculated the fractional part of in one step.
Therefore, there was no need for a Multiplier unit and the
Rounding unit before it. In addition, we have implemented this
divider where the input operands were integers. In the provided
results, this divider is identified by Poly2D(), where shows the
rounding width. To evaluate the accuracy of the proposed divider
compared to other ones, a set of 2M uniform random inputs has
been injected to all of them. The dividers have been implemented
in MATLAB tool with 8, 16 and 32 bits input operands.
Figure 4 shows the mean absolute relative error (denoted by

) for 32-bit PLApp dividers with 2, 4 and 8 sub-intervals
under different rounding widths. The absolute relative error ()
is defined as

where represents the exact (approximate)
value of the output. As shown in Figure 4, is improved
by increasing the rounding width. Also, the divider accuracy is
improved by increasing the number of non-overlapping sub-
intervals. However, when the rounding width is equal to 4, the
error introduced by the rounding operation outweighs the
approximate reciprocal calculation. Therefore, for all
the considered number of sub-intervals are almost the same. The
results show the is reduced up to 77.5% (93.62%) when
the number of sub-intervals (rounding widths) are increased from
2(4) to 8(8).
Table 1 shows and (variance of) of the
considered dividers. The results are sorted in descending order of

, where the SEERAD (Ploy2D) structure has the highest
(lowest) imprecision. In all structures, except of TruncApp,
increasing the width of rounding\truncation leads to higher

accuracy. However, in TruncApp, owing to increasing the width of
input operand of the inverse unit, the imprecision of the inverse
unit of this structure is increased, leading to more accuracy loss in
this structure. As the results show, in all structures, the accuracy of
the divider is almost independent of the input operands widths. The
PLApp(8,8), which is the most accurate form of the proposed
divider structure in this study, improves the and

 by, on average, 95.66% and 99.77% compared to
TruncApp(4), which is the best structure in terms of error among
all considered TruncApp dividers. Also, the and

 of PLApp(2,4), which has the lowest accuracy among all
PLApp dividers, are about 30.28% and 45.88% on average lower
than those of TruncApp(4) divider. On the other hand, Poly2D(8),
which has the lowest error among all structures, only on average
has 27.19% and 42.64% lower and ,
respectively, compared to the PLApp(8,8). The higher accuracy of
the Ploy2D compared to the PLApp originates from the fact that
Ploy2D divider employs planes to estimate the quotient, while in
the proposed structure, the error of the Inverse unit is scaled due to
the final multiplication.
Table 1. and of SEERAD, TruncApp, PLApp and

Poly2D structures under different input operands widths

 Architecture

8-bit 16-bit 32-bit

 (%) (%) (%) (%) (%) (%)

SEERAD(1) 16.55 1.10 16.25 1.00 16.25 1.00
SEERAD(2) 9.15 0.41 8.77 0.35 8.77 0.36
TruncApp(8) 7.72 0.14 7.91 0.14 7.90 0.14
TruncApp(6) 6.59 0.12 6.73 0.12 6.74 0.12
TruncApp(5) 5.36 0.09 5.46 0.10 5.46 0.10
SEERAD(3) 4.66 0.10 4.55 0.09 4.55 0.09
TruncApp(4) 4.1 0.08 4.07 0.07 4.07 0.07
PLApp(2,4) 2.87 0.04 2.83 0.04 2.83 0.04
PLApp(4,4) 2.87 0.04 2.82 0.04 2.82 0.04
PLApp(8,4) 2.87 0.04 2.82 0.04 2.82 0.04
SEERAD(4) 2.42 0.03 2.2 0.02 2.2 0.02
PLApp(2,5) 2.18 0.03 2.19 0.03 2.19 0.03
Poly2D(4) 1.86 0.02 1.94 0.02 1.94 0.02
PLApp(4,5) 1.42 0.01 1.40 0.01 1.40 0.01
PLApp(8,5) 1.37 0.01 1.36 0.01 1.36 0.01
PLApp(2,6) 1.11 0.01 1.08 0.01 1.08 0.01
Poly2D(5) 0.96 0.01 1.05 0.01 1.05 0.01
PLApp(2,8) 0.84 0.00 0.80 0.00 0.80 0.00
PLApp(4,6) 0.73 0.00 0.72 0.00 0.72 0.00
PLApp(8,6) 0.68 0.00 0.69 0.00 0.69 0.00
Poly2D(6) 0.40 0.00 0.48 0.00 0.48 0.00
PLApp(4,8) 0.26 0.00 0.26 0.00 0.26 0.00
Poly2D(8) 0.11 0.00 0.14 0.00 0.14 0.00

Finally, Figure 5 shows the relative error distribution of the 32-bit
Poly2D(8), PLApp(8,8) and TruncApp(4), which are the most
accurate dividers in their own class in this study. As the results
show, the density of the outputs with close to zero, in the case
of the Ploy2D is more than the other structures. The density of the
PLApp outputs with smaller than 0.001 is about 27.14%
(23X) smaller (higher) than those of the Ploy2D (TruncApp).

2.8
3

2.1
9

1.0
8

0.8

2.8
2

1.4

0.7
2

0.2
6

2.8
2

1.3
6

0.6
9

0.1
8

0
0.5

1
1.5

2
2.5

3

4 5 6 8

M
ea

nA
RE

 (%
)

Rounding Width

PLApp (2,r) PLApp(4,r) PLApp(8,r)
Figure 4. values for 32-bit PLApp dividers with different

rounding widths

5. Results and Discussion
In this section, first, the design parameters of the 32-bit proposed
divider are extracted and compared with the state-of-the-art
approximate dividers used in the study explained in the previous
section, and two exact SRT dividers. Then the efficacy of the
proposed divider in one image processing application is assessed.

5.1. Design Parameters Evaluation
The dividers have been described in Verilog HDL and then
synthesized using Synopsys Design Compiler in NanGate 45nm
CMOS Technology [15]. The delay, power and area of the dividers
have been extracted based on the Synopsys Design Compiler
reports. These parameters along with energy, ED (energy-delay-
product) and PDA (power-delay-area product) parameters of the
studied dividers are reported in Table 2. As the results show, the
SEERAD had the lowest delays among the studied structures,
however, its power consumption by increasing the accuracy level
considerably has been increased, and it was almost larger than that
of the other approximate structures.
The TruncApp structure was more power\energy efficient than the
other structures. In similar truncation\rounding widths, on average,
the TruncApp structure consumed 19.34% and 38.48% lower
power and energy compared to those of the PLApp structure. In
addition, the ED and PDA of the PLApp structure were, on
average, about 1.3X and 82.45% larger than those of the TruncApp
structure.
On the other hand, all the considered design parameters of the
PLApp were better than those of the Ploy2D structure. The delay,
power, area, energy, ED and PDA of the proposed approximate
divider were almost, on average, 14.81%, 40.78%, 33.98%,
44.89%, 47.81%, and 63.98% lower than those of the Ploy2D
structure. In addition, the delay, power, area, energy, ED, and PDA
of the proposed approximate divider compared to the considered
exact SRT Radix-4 divider were, on average, 89.63%, 97.07%,
89.93%, 99.67%, 99.96% and 99.96% lower, respectively.
Therefore, this study shows that the design parameters of the
proposed divider were better than those of the Poly2D and
SEERAD (except the delay), while they were worse than those of
the TruncApp. Hence, to more accurately rank these dividers, we
suggest a figure of merit (FoM) to combine the effect of accuracy
and design parameters in a metric. This FoM is defined by

 (5)
Figure 6 depicts the FoMs of the 32-bit PLApp, Poly2D and
TruncApp dividers under different truncation\rounding widths. By
increasing the truncation\rounding widths, the efficacy of the
PLApp and Poly2D were improved considerably compared to the
TruncApp, which is due to the inaccuracy increase of the
TruncApp structure. On the other hand, the FoMs of the PLApp,
except in the case of two non-overlapped sub-intervals, were
smaller than those of the poly2D. Among the PLApp divider
structures, when four non-overlapped sub-intervals were employed
to estimate the reciprocal led to smaller FoM.

Table 2. Delay, power, area, energy, ED, and PDA of PLApp, Poly2D,
TruncApp, SEERAD, and 2 exact SRT 32-bit dividers

Architecture Delay
(ns)

Power
(mW)

Area
(μm2)

Energy
(pJ)

 ED
(pJ×ns)

 PDA
(pJ×μm2)

PLApp(2,4) 1.27 0.89 1994 1.13 1.44 2253
PLApp(4,4) 1.25 0.86 1829 1.08 1.35 1975
PLApp(8,4) 1.37 0.83 1833 1.14 1.56 2090
PLApp(2,5) 1.65 1.27 2346 2.10 3.47 4927
PLApp(4,5) 1.64 1.15 2073 1.89 3.10 3918
PLApp(8,5) 1.62 1.24 2280 2.01 3.26 4583
PLApp(2,6) 1.96 1.67 2552 3.27 6.41 8345
PLApp(4,6) 1.81 1.51 2383 2.73 4.94 6506
PLApp(8,6) 2.05 1.67 2525 3.42 7.01 8636
PLApp(2,8) 2.51 2.51 3152 6.30 15.81 19858
PLApp(4,8) 2.29 2.67 3492 6.11 13.99 21336
PLApp(8,8) 2.52 2.86 3822 7.21 18.17 27557
Poly2D(4) 1.72 1.61 2638 2.77 4.76 7307
Poly2D(5) 1.84 1.99 3150 3.66 6.73 11529
Poly2D(6) 2.00 2.75 3960 5.50 11.00 21780
Poly2D(8) 2.26 4.23 5922 9.56 21.61 56614

TruncApp(4) 1.12 0.76 1738 0.85 0.95 1477
TruncApp(5) 1.30 0.97 2026 1.26 1.64 2553
TruncApp(6) 1.38 1.34 2457 1.85 2.55 4545
TruncApp(8) 1.61 1.91 3105 3.08 4.96 9563

SEERAD(1) 0.61 0.64 1343 0.39 0.24 524
SEERAD(2) 0.70 1.18 2445 0.83 0.58 2020
SEERAD(3) 0.8 2.12 4378 1.69 1.35 7415
SEERAD(4) 1.07 7.53 12451 8.06 8.62 100319

Radix-2 SRT 19.61 60.88 28691 1193 23411 34252945
Radix-4 SRT 17.63 54.47 25051 960 16930 24056628

Finally, Table 3 shows the breakdown of delay and power
consumption of the proposed structure with four non-overlapped
sub-intervals. As the figures of the table show, the Inverse unit
(Shift unit) has almost the most impact on the delay (power
consumption) of the circuit. On the other hand, the Shift Unit (L1D
unit plus CC block) has almost the least influence on the delay
(power consumption).
Table 3. Breakdown of the delay and power consumption of the 32-bit

PLApp divider (4 sub-intervals) under different rounding widths
 Architecture L1D+CC

 (%)
MUX+Round
 (%)

Inv
(%)

Mult
 (%)

Shift
 (%)

 PLApp(4,4) 15.29 19.61 30.59 23.92 10.59
PLApp(4,5) 14.87 20.08 31.97 22.30 11.90
PLApp(4,6) 14.52 19.03 32.58 28.71 5.16
PLApp(4,8) 10.51 21.02 34.53 21.32 12.61

 PLApp(4.4) 10.78 12.70 18.48 20.19 35.58
PLApp(4,5) 10.43 10.64 18.33 25.48 33.92
PLApp(4,6) 8.43 10.63 16.47 29.73 33.68
PLApp(4,8) 4.02 9.31 19.58 34.01 32.31

5.2. Image Processing Application
In this sub-section, the efficacy of the proposed divider in image
division application, which detects differences in a sequence of
images, has been evaluated. Therefore, in this study, each pixel of
the output image was computed by dividing corresponding pixels
of two consecutive images of the considered benchmarks [16]. The
study has been performed on sequences benchmarks from [17],
which are Walter Cronkite, Chemical Plant (close and far views),

D
el

ay

Po
w

er

0

2000

4000

6000

8000

0
0.0

12
8

0.0
25

6
0.0

38
4

0.0
51

2
0.0

64
0.0

76
8

0.0
89

6
0.1

02
4

0.1
15

2
0.1

28

Fr
eq

ue
nc

y

Absolute Relative Error

TruncApp(4)

0

50000

100000

150000

200000

0
0.0

12
8

0.0
25

6
0.0

38
4

0.0
51

2
0.0

64
0.0

76
8

0.0
89

6
0.1

02
4

0.1
15

2
0.1

28

Fr
eq

ue
nc

y

Absolute Relative Error

Poly2D (8)

0

50000

100000

150000

0
0.0

12
8

0.0
25

6
0.0

38
4

0.0
51

2
0.0

64
0.0

76
8

0.0
89

6
0.1

02
4

0.1
15

2
0.1

28

Fr
eq

ue
nc

y

Absolute Relative Error

PLApp(8,8)

Figure 5. Output distributions of Poly2D(8), PLApp(8,8) and TruncApp(4) structures

and Toy Vehicle benchmarks. This study has been performed in
MATLAB tool by employing the models of the approximate
dividers. The mean of peak signal-to-noise ratio and
mean structural similarity [18] of the approximated
results, which are obtained from comparing the result of exact
division versus approximate division, are reported in Table 4 for
the 16-bit TruncApp, PLApp (with four sub-intervals) and Poly2D
dividers under different truncation\rounding widths. The
considered architectures are sorted based on values
(from highest to lowest) in this table. Note that in this study, the
SEERAD was not included due to its high .
As expected, the output quality of the TruncApp divider was lower
than the other dividers. On average, the and of
the output images of the proposed divider were about 46.79% and
2.01% larger than those of the TruncApp divider, respectively. In
the similar number of rounding widths, the of the output
images of the Poly2D was about 8.94% higher than the those of the
PLApp divider. However, especially in the large number of
rounding widths, the of the output images were almost
similar in the cases of the PLApp and Poly2D dividers.
Table 4. and of the output images of image division

operation realized by 16-bit TruncApp, PLApp (in the case of 4 sub-
intervals) and Poly2D dividers under different benchmarks

Architecture Walter
Cronkite

Chemical
Plant

 (close view)

Chemical
Plant

 (far view)

Toy Vehicle

TruncApp(8) 29.7 0.96 29.6 0.97 28.8 0.98 27.6 0.99
TruncApp(6) 31.0 0.96 30.9 0.97 30.1 0.98 28.6 0.98
TruncApp(5) 32.7 0.95 32.5 0.97 31.6 0.98 30.0 0.97
TruncApp(4) 34.7 0.91 34.2 0.95 33.6 0.98 34.4 0.94
PLApp(4,4) 37.4 0.92 36.9 0.97 36.4 0.98 38.1 0.94
Poly2D(4) 42.1 0.96 40.1 0.98 39.2 0.99 44.7 0.98
PLApp(4,5) 43.4 0.98 43.0 0.99 41.8 1.00 43.6 0.98
Poly2D(5) 48.4 0.99 46.0 1.00 44.0 1.00 49.1 0.99
PLApp(4,6) 48.9 1.00 48.6 1.00 46.1 1.00 48.1 0.99
Poly2D(6) 54.7 1.00 52.7 1.00 49.0 1.00 53.7 1.00
PLApp(4,8) 54.4 1.00 54.0 1.00 49.7 1.00 54.5 1.00
Poly2D(8) 58.7 1.00 57.9 1.00 51.9 1.00 55.9 1.00

6. CONCLUSIONS
In this work, a low error approximate divider, which employed
multiplication as its main operation, was proposed. In this
structure, the input operands, first, were reformed (their
representation) and scaled, and then, rounded. Next, the inverse of
the rounded value of the scaled divisor was estimated by exploiting
a linear piecewise approximation approach. In this approach, the
interval representing the fractional part of the scaled divisor was
portioned into some equal-width non-overlapping sub-intervals.
Afterward, the approximated reciprocal of the rounded value of the
scaled divisor and the rounded value of the scaled dividend were
multiplied, and finally, the multiplication result was shifted to
obtain the approximate result of the division operation. The
efficacy of the proposed structure was evaluated for different
numbers of sub-intervals and rounding widths. The evaluation

showed that the accuracy of the proposed divider measured in
terms of mean absolute relative error () was in the range
of 2.87% to 0.17%, while its defined figure of merit, that combined
the effect of accuracy and design parameters, was smaller than
those of the state-of-the art dividers.
ACKNOWLEDGMENT
This research is supported in part by a grant from the Software
Hardware Foundations of the National Science Foundation.
REFERENCES
[1] J. Han an and M.Orshansky, “Approximate computing: An emerging

paradigm for energy-efficient design,” in European Test Symposium,
pages 1-6, 2013

[2] S. Hashemi, R. I. Bahar, S. Reda, “A low-power dynamic divider for
approximate applications,” Proceedings of the 53th ACM/EDAC/IEEE
Design Automation Conference (DAC), Austin, TX, USA, 2016, pp. 2-6

[3] R. Zendegani, M. Kamal, A. Fayyazi, A. Afzali-Kusha, S. Safari, and M.
Pedram, “SEERAD: A high speed yet energy-efficient rounding-based
approximate divider,” Proceedings of Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2016, pp. 1481-1484

[4] S.Amanollahi and G.Jaberipur, “Energy efficient VLSI realization of
binary-64 division with redundant number system,” IEEE Transaction on
Very Large Scale Integration (VLSI) Systems, vol. PP, no. 99, pp. 1-8,
2016

[5] S. Oberman and M. Flynn, “Design issues in division and other floating-
point operations,” IEEE Trans. Comput., vol. 46, no. 2, pp. 154–161, Feb.
1997

[6] S. F. Oberman and M. Flynn, “Division algorithms and implementations,”
IEEE transaction on Computers, vol. 46, no. 8, pp. 833-854, 1997

[7] J. Ebergen and N.Jamadagni, “Radix-2 division algorithms with an over-
redundant digit set,” IEEE Transaction on Computers, vol. 64, no. 9, pp.
2652-2663, 2015?? (2014)

[8] M. Flynn, “On division by functional iteration,” IEEE Transaction on
Computers, vol. C-19, no. 8, pp. 702-7-6, 1970

[9] V. Gupta, D. Mohapatra, A.Raghunathan, and K. Roy, “Low power digital
signal processing using approximate adders,” IEEE Transaction on
Computer-Aided Design of Integrated Circuits and Systems, vol. 32, no. 1,
pp. 124-137, 2013

[10] R. Zendegani, M. Kamal, M. Bahadori, A. Afzali-Kusha, and M. Pedram,
“RoBa Multiplier: A Rounding-Based Approximate Multiplier for High-
Speed yet Energy-Efficient Digital Signal Processing,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 2, pp. 393-
401, 2017

[11] S. Vahdat, M. Kamal, A. Afzali-Kusha, M. Pedram, and Z. Navabi,
“TruncApp: A truncation-based approximate divider for energy efficient
DPS applications,” Proceedings of Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2017, pp. 1635-1638

[12] L. Chen, J. Han, W. Liu, and F. Lombardi, “Design of approximate
unsigned integer non-restoring divider for inexact computing,”
Proceedings of the 25th edition on Great Lakes Symposium on VLSI,
2015, pp. 51-56

[13] D. Ferrari, "A division method using a parallel multiplier," IEEE Trans.
Electronic Computers, vol. EC-16, pp. 224-226, 1967.

[14] L.Wu, and C. C. Jong, “A curve fitting approach for non-iterative divider
design with accuracy and performance trade-off,” New Circuits and
Systems Conference (NEWCAS), 2015, pp. 1-4

[15] Nangate 45nm Open Cell Library. http://www.nangate.com/.
[16] U.Qidwai and C. H. Chen, “Digital Image Processing: An algorithmic

approach with MATLAB”, CRC Press, 2009
[17] The USC-SIPI Image Database [Online]. Available:

http://sipi.usc.edu/database
[18] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality

assessment: from vector visibility to structural similarity”, IEEE
Transaction on Image Processing, vol. 13, no. 4, April 2014, pp. 600-612

63
.9 10

7.
7

90
.5 15

9.
1

55
.5

54
.6

47 55
.9

58
.8

62
.2

59
.5

50

14
1.

9

12
1.

1

10
4.

1

7860
.2 13

9.
5 30

6.
2

73
2.

4

0

200

400

600

800

4 5 6 8

Fo
M

 (p
J×

μm
2)

Rounding Width
PLApp(2,r) PLApp(4,r) PLApp(8,r) Poly2D TruncApp

Figure 6. FoM of 32-bit PLApp, Poly2D and TruncApp dividers for
different rounding widths

