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ABSTRACT 
In1 this paper, we present a highly accurate and energy efficient 
non-iterative divider, which uses multiplication as its main 
building block. In this structure, the division operation is 
performed by first reforming both dividend and divisor inputs, and 
then multiplying the rounded value of the scaled dividend by the 
reciprocal of the rounded value of the scaled divisor. Precisely, the 
interval representing the fractional value of the scaled divisor is 
partitioned into non-overlapping sub-intervals, and the reciprocal 
of the scaled divisor is then approximated with a linear function in 
each of these sub-intervals. The efficacy of the proposed divider 
structure is assessed by comparing its design parameters and 
accuracy with state-of-the-art, non-iterative approximate dividers 
as well as exact dividers in 45nm digital CMOS technology. 
Circuit simulation results show that the mean absolute relative 
error of the proposed structure for doing 1 32-bit division is less 
than 0.2%, while the proposed structure has significantly lower 
energy consumption than the exact divider. Finally, the 
effectiveness of the proposed divider in one image processing 
application is reported and discussed. 
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1. INTRODUCTION 
With the growth of embedded and mobile devices, there is a high 
demand for energy efficient and relatively high-performance 
circuits. Moreover, due to increasing complexity of designs, higher 
power dissipations and longer delays are expected. On the other 
hand, there are many error resilient applications such as media 
processing (graphics, images, ), object recognition, and data 
mining, which can accept a wide range of approximate results. The 
main reasons for error resiliency in these systems are: (i) the 
benefactors of these applications,  humans, have imperfect 
perceptions, (ii) there are no golden results to seek, or (iii) the input 
to the system itself has redundancy or noise [1].  
Consequently, exactness of computations may be abandoned in 
favor of approximate results so as to improve the computational 
speed and power efficiency of digital circuits and systems that 
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produce the said results. In this approach, which is commonly 
known as approximate computing, hardware building blocks may 
be simplified compared to the blocks performing exact 
computations, resulting in more energy efficient, higher speed, and 
lower area implementations [2]. An important application of 
approximate computing is in arithmetic blocks, which consume a 
large portion of the computing system power consumption [3]. 
Among the four basic arithmetic operations, the division operation 
is a less frequently-used operation in executing most applications 
[4]. However, when it is needed, it constitutes a costly operation 
because of its high latency and power consumption. Therefore, 
improving computational speed and reducing energy consumption 
of a divider block is very important in designs that perform the 
division operation [5].                                                           
The division operation can be performed iteratively or non-
iteratively. Iterative division algorithms can themselves be 
categorized into two main classes: digit recurrence methods and 
functional iterative methods [6]. In digit recurrence algorithms, the 
basic operation is the subtraction operation. The bits (digits) of the 
quotient are obtained iteratively, one bit (digit) per step. Therefore, 
these dividers are easy to implement, but also become slow. The 
SRT division algorithm is the most frequently implemented 
algorithm from this class of dividers [7]. The basic operation in 
functional iterative algorithms is multiplication, where the 
algorithm starts from an estimation, and then tries to converge to 
the actual result. The Newton-Raphson algorithm [8] is one of the 
most popular functional iterative methods. On the other hand, 
division operation can be performed in one step by simplifying it to 
a multiplication operation. In this division algorithm, the dividend 
is multiplied by the reciprocal (inverse) of the divisor. Therefore, 
the complex division operation is converted into a multiplication. 
The challenge, of course, is to obtain the reciprocal of the divisor. 
One solution is the use of the approximate computing paradigm to 
determine an inexact value of the reciprocal of the divisor.  
While many approximate designs have been suggested for adders 
and multipliers (  [9], [10]), designing approximate dividers 
received limited attentions (  [3], [11]). In this paper, we 
propose a highly accurate yet energy efficient approximate divider, 
which its computation core is based on multiplying the dividend by 
the reciprocal of the divisor. This structure utilizes piecewise linear 
approximation to calculate the reciprocal of the divisor. The 
interval representing the divisor is partitioned into many equal-
width, non-overlapping sub-intervals, and the reciprocal is 
approximated with a line in each of these individual regions. In this 
structure, the dividend and the divisor are reformed, scaled and 
rounded before calculating the reciprocal and performing the final 
multiplication, leading to simplified hardware implementation. In 
this work, the final division result is obtained by employing exact 
multiplication, while one may use approximate multiplication as 
well.  
The rest of the paper is organized as follows. In Section 2, a 
literature review on approximate dividers is provided. The 
algorithm of the proposed divider and its hardware implementation 
details are discussed in Section 3. In Section 4, the accuracy of the 
proposed divider is compared with some prior approximate 



 

dividers, while the design parameters and the efficacy of the 
proposed structure in an image processing application are studied 
in Section 5. Finally, the paper is concluded in Section 6. 

2. Related Work 
One basic method to design an approximate divider is to substitute 
the hardware elements in the exact divider circuit with their 
simplified blocks. For example, in reference [12] some circuit 
blocks of the exact subtractor in a non-restoring divider are 
replaced with approximate ones to improve the speed and reduce 
the power consumption of the circuit. Another common technique 
to improve the performance of an arithmetic operation is to 
(dynamically) ignore the least significant bits of the operands, 
which is called truncation. For example, in reference [2] the 
dividend and the divisor are dynamically truncated to some number 
of bits, and therefore, a smaller exact divider is employed to 
perform a larger approximate division operation. There are some 
state-of-the-art approximate dividers, which their structure is based 
on multiplication of the dividend and the reciprocal of the divisor. 
For example, in reference [3] an approximate divider called 
SEERAD is presented, where the divisor (i.e., ) is rounded to the 
nearest number in the form of , and the division 
operation of  is simplified to calculating the shifted value of 

. In this equation,  denotes the position of the leading one in 
, while the tuple  is determined for each group of  values 

to minimize the error of the division operation. The number of 
groups shows the accuracy level of SEERAD. In reference [11], an 
approximate divider structure, called TruncApp, is suggested, 
where the input operands are both scaled to lie in the range of 

 and then truncated down to a bit width of t (  truncation 
width). Next, using Taylor series expansion, the reciprocal of the 
divisor is approximately calculated by inverting all the fractional 
bits of the truncated value of the scaled divisor and concatenating a 
“1” at its most significant position. As a result, the reciprocal will 
lie in the range of . Finally, the truncated scaled dividend is 
multiplied by the approximate reciprocal of the truncated scaled 
divisor to yield the approximate quotient. When the truncated 
lengths of the operands are increased beyond a relatively small 
value say 4 bits, the accuracy of the divider starts to degrade. This 
is due to the fact that the approximate reciprocal calculation yields 
to less accurate results as its bit width is increased. This is a key 
rationale behind our present work, which proposes a completely 
different method of calculating the approximate reciprocal of the 
divisor. 
The idea of using curve fitting approaches for division was 
suggested in [13] without suggesting a hardware implementation 
for the division operation. In [14], the division operation is 
simplified by fitting surfaces on the quotient. To improve the 
accuracy, the quotient surface has been partitioned into different 
regions, and a square or triangular plane is fitted to each of them. 
This approach suffers from the need for huge look-up tables to store 
all the required coefficients. In our work to be presented below, to 
reduce the needed storage for curve fitting coefficients and also 
enjoy the low complexity of multiplication-based division, we 
suggest using piecewise linear approximation for determining the 
reciprocal of the divisor. 

3. Proposed Approximate Divider 
An -bit unsigned integer number  may be represented as  

 

where is either zero or one,  (which will be called the reformed 
operand) is a fractional number between one and two,  is the 
fractional part of , and  denotes the position of the leading one 

in . Now, based on the reforming approach of (1), the division 
operation (  divided by ) may be represented by 

 

 
where , which its value lies in the range of , is the 
reciprocal of the scaled divisor, . In this paper, we suggest 
utilizing a piecewise linear curve fitting approach [13] to 
approximate . Precisely, the   interval representing  may 
be partitioned into many equal-width, non-overlapping sub-
intervals, and the reciprocal is approximated with a linear function 
in each sub-interval. In this case, the reciprocal is obtained from 

 

where  denotes the index of the sub-interval where  lies in. Note 
that for simplicity, the rounded value of  is multiplied by 
coefficient The coefficients  and  are calculated with the 
curve fitting and should be rounded to the nearest number based on 
the considered width of operations. Evidently, the accuracy of the 
estimated reciprocal is increased by utilizing higher number of sub-
intervals, however, this will also lead to higher power dissipation 
and delay costs. In this paper, without loss of generality, we 
consider three different sub-interval counts  2, 4, and 8 sub-
intervals. Figure 1 shows  as a function of  as well as 
approximated  under the said sub-interval counts. As the plots 
show, the maximum error (2.87%) arises when  range is 
partitioned into two sub-intervals.   
3.1. Hardware Implementation of the 

Proposed Approximate Divider 
Internal structure of the hardware implementation of the proposed 
approximate divider is shown in Figure 2. The proposed structure 
is like the one suggested in [11]. However, in our structure, the 
inverse unit, which constitutes the core of the approximate division 
operation, is completely changed to rely on piecewise linear 
approximation method of [13]. Furthermore, a Rounding unit, 
instead of a Truncation unit, is employed. These modifications lead 
to superior accuracy of the proposed design compared to the one 
suggested in [11]. The detailed explanation of each block is 
provided in the next sub-sections. It should be mentioned that the 
proposed structure supports unsigned division operation. To 
support signed operation, before the division operation, the 
absolute values of the input operands should be extracted, and the 
division operation is performed based on the extracted absolute 
values, and finally, the sign of the determined quotient should be 
set according to the signs of the input operands.  

 

 

Figure 1. (a) vs  , (b) the  region is partitioned into 2, (c) 4, (d) 
8 sub-intervals and approximated with a straight line in each region 

shown with the exact curve 
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3.1.1. Leading One Detector Unit/ Code 
Conversion Block/ Multiplexer 
Inputs of the Leading One Detector (L1D) unit are the -bit 
dividend and the -bit divisor, which are concurrently passed to this 
unit. This unit has two outputs whose widths are the same as the 
input widths. The two outputs specify the positions of the leading 
one for each of the input operands. Thus, the binary representation 
of each output has a “1” at the position of the leading one of its 
corresponding input, while all other bits of the output are set to zero. 
The output of the L1D unit goes into a Code Conversion (CC) 
block, which in turn encodes the position of the leading one of the 
input operand in  bits. The output of the CC block for each 
operand and the corresponding operand itself are then fed into a 
multiplexer, which chooses the fractional part of the reformed 
operand, i.e.,  in (1). As an example, if the dividend has an 8-bit 
value of  , the output of the L1D unit will be 

, whereas the output of the CC block will be  
Finally, the output of the multiplexer will be . Since 
the fractional part of a reformed 8-bit operand has at most 7 bits, we 
place a zero to the right side of this 7-bit fractional part to make it 
an 8-bit one. Similarly, if the divisor is , the output of 
the L1D unit will be , whereas the output of the CC 
block will be  Finally, the output of the multiplexer will be 

.  
3.1.2. Rounding Unit 
To facilitate the division operation, only a subset of most significant 
bits of fractional parts of both reformed operands are utilized in the 
division operation. Therefore, we suggest to shorten the widths of 
outputs of the Multiplexer unit to gain speed and power. One way to 
choose the most significant bits of the operands is by truncation, 
which was employed in [2]. However, the accuracy of rounding is 
more than truncation, and the accuracy of the input operand of the 
Inverse unit has a considerable impact on the final precision of the 
division operation. Therefore, in this work, we employ a Rounding 
unit, which rounds the operands to the nearest numbers. Outputs of 
this unit are designated by , where  denotes either dividend  
or divisor  and  represents the bit width of the rounded output 
(also called rounding width). In the previous example, the output of 
the Multiplexer unit with the dividend as its input was 

, which means that the fractional part of the reformed 
operand has a value of (0.609375)10. The output of the Rounding 
unit for the dividend with  will be , which denotes a 
decimal value of (0.625)10. On the other hand, the output of the 
Multiplexer unit for the divisor was , which has the 
decimal value of (0.328125)10, and the output of the Rounding unit 
for the divisor with  will be  with the decimal value 
of (0.3125)10. More generally, to perform the rounding operation, 
first, the  most significant bits of any input to the Rounding unit 
are truncated; next if the  bit of the input is one, the 
truncated value is incremented by one, and this value is considered 
as the output of this unit. However, if  bit is zero, the 
output will be simply the truncated value. The only exception for 
this operation is when the truncated -bit value of the input of the 
Rounding unit is  and its  bit is one. In this case, 
incrementing the truncated value by one turns the rounding value 

to be zero, which would not be a good approximation. To avoid 
this, the Rounding unit will produce the truncated -bit operand 
itself as its output. With respect to the above example for the 
dividend and the divisor, because the 5th bit of the fractional part of 
the reformed dividend is one, the output of the Rounding unit is 

. However, for the divisor, the 
output of the Rounding unit becomes the truncated value of 

, as the 5th bit is zero. The internal structure of this unit is 
depicted in Figure 3.  

3.1.3. Inverse Unit Plus Second Rounding Unit 
As mentioned before, in the proposed division algorithm, we 
suggest using piecewise linear approximation to estimate the 
reciprocal of the reformed divisor. Hence, the Inverse unit contains 
two one-dimensional look-up tables (LUT) with entries each, 
where  is the selected number of equal-width, non-overlapping 
sub-intervals. LUTα contains  coefficients, whereas LUTβ 
contains  coefficients for the sub-intervals (see (3)). Indeed, 

most significant bits of  are used as the key to these 
LUTs to get the stored coefficients. Since calculating  may 
be costly, we use the approach suggested in [14], and thus, 
implement this multiplication as a series of add and shift 
operations. For instance, to calculate , one needs to 
just calculate . Therefore, instead of storing  
values in the corresponding table, positional notation weights of its 
binary representation digits are stored (e.g., 2 and 8 in the case of 
0.625) in  bits. To limit the required memory for weights, we 
round the extracted  to  bits. This means that value of  varies 
from 0 to  for a width of bits. Therefore, at most  
distinct (power-of-two) weights are stored in each row of LUTα 
using a bit vector of  bits. In this work, a maximum number of 
five distinct weights are sufficient to produce the required , 
which, as an example, corresponds to a case when eight non-
overlapping sub-intervals are selected and  in . Therefore, 
the size of LUTα is smaller than  Since  itself is  
bits,  will have  bits. Thus, the bit width of  must 
be , resulting in bit storage size of  for LUTβ. 
Note that we normally set  = , which means the total memory 
needed for both LUTs is smaller than .  
After fetching the proper coefficients from the LUTs, a multi-
operand adder is employed to find the inverse value of the input 
operand. More precisely, Carry Save adders (CSA) are utilized to 
repeatedly reduce maximum of six inputs, which are five shifted 
values of  and , to two outputs, and finally, a Kogge-Stone 
adder is utilized to sum up these levels. It is worth mentioning that 

 is always smaller than one, thus, no carry will be produced to 
be considered as the integer part of the result. Finally, the  bit 
output of the Inverse unit goes into a second Rounding unit to 
choose the  most significant bits required for the multiplication 
operation.  
3.1.4. Multiplier Unit Plus Shift Unit 
The last part of the division operation is to multiply the reciprocal 
of the rounded value of the reformed divisor to the rounded value 
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Figure 2. Hardware implementation of the proposed divider  

Figure 3. The internal structure of the Rounding unit 



 

of the reformed dividend. Here, an exact Wallace Tree Multiplier 
is employed to perform the multiplication. Note that as mentioned 
before, one may use approximate multiplication to improve the 
performance at the cost of loss in computational accuracy. Finally, 
the output of the multiplier and the position of the leading ones (  
and  in (2)) of the operands are passed to the Shift unit to 
determine the final result. The Shift unit, based on the  
value, shifts its input in a range of  to  bits. 
Therefore, the resulting quotient ( ) is a fixed-point number with  
integer bits and  fractional bits.   

4. Accuracy of the Proposed Approximate 
Divider 
In this section, the accuracy of the proposed divider is studied and 
compared with three state-of-the-art, non-iterative approximate 
dividers including SEERAD [3], TruncApp [11] and the divider 
proposed in [14]. The proposed divider, which we call Piecewise 
Linear Approximate Divider or PLApp for short, has been 
implemented with different number of sub-intervals (2, 4, and 8) 
and rounding widths (4, 5, 6, and 8); Each approximate divider is 
identified as PLApp(s,r), where  refers to the number of 
considered sub-intervals and  denotes the rounding width. In the 
case of SEERAD, four accuracy levels were considered, which are 
indicated by SEERAD( ), where  shows the accuracy level. In 
the case of TruncApp divider, four truncation widths have been 
considered, which are denoted by TruncApp( ), where  shows the 
considered truncation width. In the implementation of TruncApp, 
for a fair comparison, we employed exact multiplier similar to our 
structure. Finally, in the case of the divider proposed in [14], in the 
implemented structure, the scaled operands were rounded to the 
nearest number, and the plane representing the scaled quotient was 
partitioned into  squares. The hardware implementation of 
this divider was the same as the proposed divider, while the inverse 
unit in this structure calculated the fractional part of  in one step. 
Therefore, there was no need for a Multiplier unit and the 
Rounding unit before it. In addition, we have implemented this 
divider where the input operands were integers. In the provided 
results, this divider is identified by Poly2D( ), where  shows the 
rounding width. To evaluate the accuracy of the proposed divider 
compared to other ones, a set of 2M uniform random inputs has 
been injected to all of them. The dividers have been implemented 
in MATLAB tool with 8, 16 and 32 bits input operands.  
Figure 4 shows the mean absolute relative error (denoted by 

) for 32-bit PLApp dividers with 2, 4 and 8 sub-intervals 
under different rounding widths. The absolute relative error ( ) 
is defined as 

 

where  represents the exact (approximate) 
value of the output. As shown in Figure 4, is improved 
by increasing the rounding width. Also, the divider accuracy is 
improved by increasing the number of non-overlapping sub-
intervals. However, when the rounding width is equal to 4, the 
error introduced by the rounding operation outweighs the 
approximate reciprocal calculation. Therefore,  for all 
the considered number of sub-intervals are almost the same. The 
results show the  is reduced up to 77.5% (93.62%) when 
the number of sub-intervals (rounding widths) are increased from 
2(4) to 8(8). 
Table 1 shows and (variance of ) of the 
considered dividers. The results are sorted in descending order of 

, where the SEERAD (Ploy2D) structure has the highest 
(lowest) imprecision. In all structures, except of TruncApp, 
increasing the width of rounding\truncation leads to higher 

accuracy. However, in TruncApp, owing to increasing the width of 
input operand of the inverse unit, the imprecision of the inverse 
unit of this structure is increased, leading to more accuracy loss in 
this structure. As the results show, in all structures, the accuracy of 
the divider is almost independent of the input operands widths. The 
PLApp(8,8), which is the most accurate form of the proposed 
divider structure in this study, improves the  and 

 by, on average, 95.66% and 99.77% compared to 
TruncApp(4), which is the best structure in terms of error among 
all considered TruncApp dividers. Also, the  and 

 of PLApp(2,4), which has the lowest accuracy among all 
PLApp dividers, are about 30.28% and 45.88% on average lower 
than those of  TruncApp(4) divider. On the other hand, Poly2D(8), 
which has the lowest error among all  structures, only on average 
has 27.19% and 42.64% lower and , 
respectively, compared to the PLApp(8,8). The higher accuracy of 
the Ploy2D compared to the PLApp originates from the fact that 
Ploy2D divider employs planes to estimate the quotient, while in 
the proposed structure, the error of the Inverse unit is scaled due to 
the final multiplication. 
Table 1.  and  of SEERAD, TruncApp, PLApp and 

Poly2D structures under different input operands widths 
 
 
 Architecture  

8-bit 16-bit 32-bit 

   (%)    (%)     (%)    (%)     (%)    (%) 

SEERAD(1) 16.55  1.10 16.25  1.00 16.25    1.00 
SEERAD(2) 9.15  0.41 8.77  0.35 8.77  0.36 
TruncApp(8) 7.72  0.14 7.91  0.14 7.90  0.14 
TruncApp(6) 6.59  0.12 6.73  0.12 6.74  0.12 
TruncApp(5) 5.36  0.09 5.46  0.10 5.46  0.10 
SEERAD(3) 4.66  0.10 4.55  0.09 4.55  0.09 
TruncApp(4) 4.1  0.08 4.07  0.07 4.07  0.07 
PLApp(2,4) 2.87  0.04 2.83  0.04 2.83  0.04 
PLApp(4,4) 2.87  0.04 2.82  0.04 2.82  0.04 
PLApp(8,4) 2.87  0.04 2.82  0.04 2.82  0.04 
SEERAD(4) 2.42  0.03 2.2  0.02 2.2  0.02 
PLApp(2,5) 2.18  0.03 2.19  0.03 2.19  0.03 
Poly2D(4) 1.86  0.02 1.94  0.02 1.94  0.02 
PLApp(4,5) 1.42  0.01 1.40  0.01 1.40  0.01 
PLApp(8,5) 1.37  0.01 1.36  0.01 1.36  0.01 
PLApp(2,6) 1.11  0.01 1.08  0.01 1.08  0.01 
Poly2D(5) 0.96  0.01 1.05  0.01 1.05  0.01 
PLApp(2,8) 0.84  0.00 0.80  0.00 0.80  0.00 
PLApp(4,6) 0.73  0.00 0.72  0.00 0.72  0.00 
PLApp(8,6) 0.68  0.00 0.69  0.00 0.69  0.00 
Poly2D(6) 0.40  0.00 0.48  0.00 0.48  0.00 
PLApp(4,8) 0.26  0.00 0.26  0.00 0.26  0.00 
Poly2D(8) 0.11  0.00 0.14  0.00 0.14  0.00 

Finally, Figure 5 shows the relative error distribution of the 32-bit 
Poly2D(8), PLApp(8,8) and TruncApp(4), which are the most 
accurate dividers in their own class in this study. As the results 
show, the density of the outputs with  close to zero, in the case 
of the Ploy2D is more than the other structures. The density of the 
PLApp outputs with  smaller than 0.001 is about 27.14% 
(23X) smaller (higher) than those of the Ploy2D (TruncApp). 
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5. Results and Discussion 
In this section, first, the design parameters of the 32-bit proposed 
divider are extracted and compared with the state-of-the-art 
approximate dividers used in the study explained in the previous 
section, and two exact SRT dividers. Then the efficacy of the 
proposed divider in one image processing application is assessed. 

5.1. Design Parameters Evaluation 
The dividers have been described in Verilog HDL and then 
synthesized using Synopsys Design Compiler in NanGate 45nm 
CMOS Technology [15]. The delay, power and area of the dividers 
have been extracted based on the Synopsys Design Compiler 
reports. These parameters along with energy, ED (energy-delay-
product) and PDA (power-delay-area product) parameters of the 
studied dividers are reported in Table 2. As the results show, the 
SEERAD had the lowest delays among the studied structures, 
however, its power consumption by increasing the accuracy level 
considerably has been increased, and it was almost larger than that 
of the other approximate structures. 
The TruncApp structure was more power\energy efficient than the 
other structures. In similar truncation\rounding widths, on average, 
the TruncApp structure consumed 19.34% and 38.48% lower 
power and energy compared to those of the PLApp structure. In 
addition, the ED and PDA of the PLApp structure were, on 
average, about 1.3X and 82.45% larger than those of the TruncApp 
structure.  
On the other hand, all the considered design parameters of the 
PLApp were better than those of the Ploy2D structure. The delay, 
power, area, energy, ED and PDA of the proposed approximate 
divider were almost, on average, 14.81%, 40.78%, 33.98%, 
44.89%, 47.81%, and 63.98% lower than those of the Ploy2D 
structure. In addition, the delay, power, area, energy, ED, and PDA 
of the proposed approximate divider compared to the considered 
exact SRT Radix-4 divider were, on average, 89.63%, 97.07%, 
89.93%, 99.67%, 99.96% and 99.96% lower, respectively.  
Therefore, this study shows that the design parameters of the 
proposed divider were better than those of the Poly2D and 
SEERAD (except the delay), while they were worse than those of 
the TruncApp. Hence, to more accurately rank these dividers, we 
suggest a figure of merit (FoM) to combine the effect of accuracy 
and design parameters in a metric. This FoM is defined by 

                     (5) 
Figure 6 depicts the FoMs of the 32-bit PLApp, Poly2D and 
TruncApp dividers under different truncation\rounding widths. By 
increasing the truncation\rounding widths, the efficacy of the 
PLApp and Poly2D were improved considerably compared to the 
TruncApp, which is due to the inaccuracy increase of the 
TruncApp structure. On the other hand, the FoMs of the PLApp, 
except in the case of two non-overlapped sub-intervals, were 
smaller than those of the poly2D. Among the PLApp divider 
structures, when four non-overlapped sub-intervals were employed 
to estimate the reciprocal led to smaller FoM.  

Table 2. Delay, power, area, energy, ED, and PDA of PLApp, Poly2D, 
TruncApp, SEERAD, and 2 exact SRT 32-bit dividers 

Architecture  Delay 
(ns) 

Power 
(mW) 

Area 
(μm2) 

Energy 
(pJ) 

   ED 
(pJ×ns) 

   PDA 
(pJ×μm2) 

PLApp(2,4) 1.27 0.89 1994 1.13 1.44 2253 
PLApp(4,4) 1.25 0.86 1829 1.08 1.35 1975 
PLApp(8,4) 1.37 0.83 1833 1.14 1.56 2090 
PLApp(2,5) 1.65 1.27 2346 2.10 3.47 4927 
PLApp(4,5) 1.64 1.15 2073 1.89 3.10 3918 
PLApp(8,5) 1.62 1.24 2280 2.01 3.26 4583 
PLApp(2,6) 1.96 1.67 2552 3.27 6.41 8345 
PLApp(4,6) 1.81 1.51 2383 2.73 4.94 6506 
PLApp(8,6) 2.05 1.67 2525 3.42 7.01 8636 
PLApp(2,8) 2.51 2.51 3152 6.30 15.81 19858 
PLApp(4,8) 2.29 2.67 3492 6.11 13.99 21336 
PLApp(8,8) 2.52 2.86 3822 7.21 18.17 27557 
Poly2D(4) 1.72 1.61 2638 2.77 4.76 7307 
Poly2D(5) 1.84 1.99 3150 3.66 6.73 11529 
Poly2D(6) 2.00 2.75 3960 5.50 11.00 21780 
Poly2D(8) 2.26 4.23 5922 9.56 21.61 56614 

TruncApp(4) 1.12 0.76 1738 0.85 0.95 1477 
TruncApp(5) 1.30 0.97 2026 1.26 1.64 2553 
TruncApp(6) 1.38 1.34 2457 1.85 2.55 4545 
TruncApp(8) 1.61 1.91 3105 3.08 4.96 9563 

SEERAD(1) 0.61 0.64 1343 0.39 0.24 524 
SEERAD(2) 0.70 1.18 2445 0.83 0.58 2020 
SEERAD(3) 0.8 2.12 4378 1.69 1.35 7415 
SEERAD(4) 1.07 7.53 12451 8.06 8.62 100319 

Radix-2 SRT 19.61 60.88 28691 1193 23411 34252945 
Radix-4 SRT 17.63 54.47 25051 960 16930 24056628 

Finally, Table 3 shows the breakdown of delay and power 
consumption of the proposed structure with four non-overlapped 
sub-intervals. As the figures of the table show, the Inverse unit 
(Shift unit) has almost the most impact on the delay (power 
consumption) of the circuit. On the other hand, the Shift Unit (L1D 
unit plus CC block) has almost the least influence on the delay 
(power consumption).  
Table 3. Breakdown of the delay and power consumption of the 32-bit 

PLApp divider (4 sub-intervals) under different rounding widths 
       Architecture    L1D+CC 

       (%) 
MUX+Round 
        (%) 

Inv 
(%) 

Mult 
 (%) 

Shift 
 (%) 

 PLApp(4,4)   15.29       19.61 30.59 23.92  10.59 
PLApp(4,5)   14.87       20.08 31.97 22.30  11.90 
PLApp(4,6)   14.52       19.03 32.58 28.71  5.16 
PLApp(4,8)   10.51       21.02 34.53 21.32  12.61 

 PLApp(4.4)   10.78       12.70 18.48 20.19  35.58 
PLApp(4,5)   10.43       10.64 18.33 25.48  33.92 
PLApp(4,6)   8.43       10.63 16.47 29.73  33.68 
PLApp(4,8)   4.02       9.31 19.58 34.01  32.31 

5.2. Image Processing Application 
In this sub-section, the efficacy of the proposed divider in image 
division application, which detects differences in a sequence of 
images, has been evaluated. Therefore, in this study, each pixel of 
the output image was computed by dividing corresponding pixels 
of two consecutive images of the considered benchmarks [16]. The 
study has been performed on sequences benchmarks from [17], 
which are Walter Cronkite, Chemical Plant (close and far views), 
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Figure 5. Output  distributions of Poly2D(8), PLApp(8,8) and TruncApp(4) structures 



 

 

and Toy Vehicle benchmarks. This study has been performed in 
MATLAB tool by employing the models of the approximate 
dividers. The mean of peak signal-to-noise ratio  and 
mean structural similarity  [18] of the approximated 
results, which are obtained from comparing the result of exact 
division versus approximate division, are reported in Table 4 for 
the 16-bit TruncApp, PLApp (with four sub-intervals) and Poly2D 
dividers under different truncation\rounding widths. The 
considered architectures are sorted based on  values 
(from highest to lowest) in this table. Note that in this study, the 
SEERAD was not included due to its high . 
As expected, the output quality of the TruncApp divider was lower 
than the other dividers. On average, the  and  of 
the output images of the proposed divider were about 46.79% and 
2.01% larger than those of the TruncApp divider, respectively. In 
the similar number of rounding widths, the  of the output 
images of the Poly2D was about 8.94% higher than the those of the 
PLApp divider. However, especially in the large number of 
rounding widths, the  of the output images were almost 
similar in the cases of the PLApp and Poly2D dividers.  
Table 4.  and  of the output images of image division 

operation realized by 16-bit TruncApp, PLApp (in the case of 4 sub-
intervals) and Poly2D dividers under different benchmarks 

Architecture  Walter 
Cronkite  

Chemical 
Plant 

 (close view) 

Chemical 
Plant 

 (far view) 

 
Toy Vehicle 

    

TruncApp(8) 29.7    0.96 29.6    0.97 28.8    0.98 27.6    0.99  
TruncApp(6) 31.0    0.96 30.9    0.97 30.1    0.98 28.6    0.98   
TruncApp(5) 32.7    0.95 32.5    0.97 31.6    0.98 30.0    0.97     
TruncApp(4) 34.7    0.91 34.2    0.95 33.6    0.98 34.4    0.94 
PLApp(4,4) 37.4    0.92 36.9    0.97 36.4    0.98 38.1    0.94 
Poly2D(4) 42.1    0.96 40.1    0.98 39.2    0.99 44.7    0.98    
PLApp(4,5) 43.4    0.98 43.0    0.99 41.8    1.00 43.6    0.98    
Poly2D(5) 48.4    0.99 46.0    1.00 44.0    1.00 49.1    0.99 
PLApp(4,6) 48.9    1.00 48.6    1.00 46.1    1.00 48.1    0.99 
Poly2D(6) 54.7    1.00 52.7    1.00 49.0    1.00 53.7    1.00   
PLApp(4,8) 54.4    1.00 54.0    1.00 49.7    1.00 54.5    1.00 
Poly2D(8) 58.7    1.00 57.9    1.00 51.9    1.00 55.9    1.00 

6. CONCLUSIONS 
In this work, a low error approximate divider, which employed 
multiplication as its main operation, was proposed. In this 
structure, the input operands, first, were reformed (their 
representation) and scaled, and then, rounded. Next, the inverse of 
the rounded value of the scaled divisor was estimated by exploiting 
a linear piecewise approximation approach. In this approach, the 
interval representing the fractional part of the scaled divisor was 
portioned into some equal-width non-overlapping sub-intervals. 
Afterward, the approximated reciprocal of the rounded value of the 
scaled divisor and the rounded value of the scaled dividend were 
multiplied, and finally, the multiplication result was shifted to 
obtain the approximate result of the division operation. The 
efficacy of the proposed structure was evaluated for different 
numbers of sub-intervals and rounding widths. The evaluation 

showed that the accuracy of the proposed divider measured in 
terms of mean absolute relative error ( ) was in the range 
of 2.87% to 0.17%, while its defined figure of merit, that combined 
the effect of accuracy and design parameters, was smaller than 
those of the state-of-the art dividers. 
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different rounding widths 


