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Opportunities for Power Savings

System

Behavioral

RT-Level

Logic

Physical 5-10 %

10-25 %

25-40%

30-60 %

50-90 %
HW/SW Co-design
Custom ISA
Algorithm Design
Communication Synthesis

Scheduling, Allocation
Pipelining
Behavioral Transformations

Clock Gating, Precomputation
Operand Isolation
State Assignment, Retiming

Logic Restructuring
Technology Mapping
Pin Ordering & Phase Assignment

Fanout Optimization, Buffering
Transistor Sizing, Placement
Partitioning, Clock Tree Design
Glitch EliminationSavings
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Realistic Estimation Expectations

System

Architectural

RT-Level

Gate

Transistor

Instruction-Level Models
IP Core Models
Program Complexity
Program Simulation

Entropic Bounds
Architectural Simulation
I/O and Memory Accesses

RT-Level Macromodels
HDL Simulation
 Quick Synthesis

Probabilistic Simulation
Gate-Level Simulation
Sampling and Compaction
ASIC Library Models

Parasitic Extraction
Accurate Timing Analysis
Circuit-Level Simulation

5-10 %

10-30 %

30-50%

40-70 %

70-90 %

Day

Hours

Hour

Minutes

Minute

Speed Error
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Example Applications

• Portable Electronics (PC, PDA, Wireless)
• Ultra-Low-Power Circuits (Pacemaker)
• Space Missions (Miniaturized Satellites)
• IC Cost (Packaging and Cooling)
• Reliability (Electromigration, Latch-up)
• Signal Integrity (Switching Noise, DC

Voltage Drop)
• Thermal Design

M. PedramUSC

Digital Camera Circuit
CCD

preprocessor

DRAM

ROM

Compact
flash

Single-cycle
multiplier

accumulator

Pixel
coprocessor

Mini-RISC MIPS
microprocessor

Memory
controller

10-channel
DMA

controller

JPEG
codec

PC/ATA
interface

General-
purpose I/O

NTSC/PAL
encoder

Triple
video D/A

On-screen
display

controller

LCD
controller

High-speed
serial I/O

Charge
coupled
device

Camera
lens

A/D

To TV

Camera’s
LCD

display

To PC
interface

Source : LSI Logic
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A Power Estimation Methodology

Classify Modules

Quick Synthesis
Sampling/Compaction

Model Reduction

Control 
Logic

Interface
 Logic

Cores w/o
Macromodel

Decompose & 
Classify Blocks

Composite 
Cores

Library Models
Analytic Models

Memory

Cores with 
Macromodel

Analog 
ModulesBehavioral

Simulation

Input Vector 
Sequences

Design
Planning

Interconnect
Estimates

HDL Description

Cell
Library

CAD Database
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Quick Synthesis

Quick RTL Synthesis

Quick Logic Synthesis

RTL Source Code

RTL Netlist

Mapped Netlist
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Cell Characterization

SPICE Simulation Event-Driven Simulation

Gate-Level Netlist

SPICE Parameters

Transistor-Level
 Netlist

Gate-Level Power/Delay
Characterization Data

RT-Level Power/Delay
Characterization Data
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Circuit Model Reduction

Datapath Block Predictor Block

FSM
Approximate 
SSM Model

Analog Block Sensitivity-Based 
Simplified Models

Random Logic k-LUT Structure
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Dynamic (Simulative) Techniques

Report
 Power

   Input
Sequence

 Sampled
Sequence

Compacted
 Sequence

RT-Level or Gate-Level
Netlist

Library Data

Probabilistic
Compaction

Statistical
Sampling

Event or
Cycle-Based
Simulation
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Simple Random Sampling (SRS)

Exhaustive

0% error
very time consuming

< 5% error
> 1000X speedup

Random Sampling
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Monte Carlo Simulation

Efficiency: depends on
population characteristics
and sampling procedure

“Difficult” distributions

NO

YES

Report 
 Power

Input vectors

Generate one 
sample of k units

Do circuit level 
simulation

Calculate mean power 
& confidence interval

Converged?
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SRS Results

0 2000 4000 6000 8000

C432

C880

C1355

C1908

C2670

C3540

C5315

C6288

C7552

Biased Sequence
Random Sequence
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Stratified Random Sampling (StRS)
Estimate the average weight, assuming that gender and
age of individuals are readily available

Lower sample
variance leads to
faster convergence

Stratification
S

am
pling
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Application to Power Estimation
Age & Gender → Zero-delay power estimate
Weight → Powermill power estimate

Input vectors
(population)

Report Power

Zero-Delay Simulation
of the Entire population

Population
Stratification

Random Sampling and
PowerMill Simulation

Convergent?

NO

YES
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Regression Estimation
Estimate the average height, assuming that weight of
individuals is readily available

Sample
H1

Simple Random
Estimator

H2 = H1+Slope•
(W2-W1)

Regression
Estimator

W1: Avg. Weight of Samples

W2: Avg. Weight of Population

height

weight

slope

height

H1: Avg. Height of Samples
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StRS Results

0
2
4
6
8

10
12

C432 C880 C1355 C1908 C2670 C3540 C5315 C6288 C7552

Speedup
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Sampling on FSMs
Method 1: Functional simulation + sampling on comb. circuit

 Logic

FFs

 Logic

Input
 Seq. Input

Seq. +
State
Lines

Method 2: Do machine warm-up for every sampling unit

 Logic

FFs

Warm-up
vectors +
sampling 
unit

Warm-up sequence
length can be quite
large
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Probabilistic Compaction (PC)
Sequence compaction : Generate a new, but shorter,
sequence which exhibits nearly the same spatio-
temporal correlations as the initial sequence

Target
Circuit

Probabilistic
Model

Sequence
Generation New

 Seq.

Initial
Seq.

outin
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PC by Example
Initial sequence

01101010011111010
11100000110111000
10000110101110101

Avg. bit activity
23/16

Compacted sequence
001010
011000
010001

Avg. bit activity
8/5 Stochastic State Machine Model

1/2

1 1/2

1/4

2/3

1/2

1/4

1/2
1/3

1/2 1/2

1/2

1/2

3

0

6

1

5

4

7

1/2
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Dynamic Markov Trees

S1 = (0000, 0001, 1001, 1100, 1001, 1100, 1001, 1100)

1
2 2

3 3 3

4 4 4

2 6
2

2

1 1

3 3
3 3

3 3

DMT0

DMT1 1
2 2

3 3 3

4 4 4
5 555

6 666

7 777
8 888

2 6
2 33

2

1 11

1

1

1

1

1
1

1

3
3

3
3

3

3

3
3
2

2

2
2

Upper subtree

Lower subtrees
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Comparison with SRS

0% 2% 4% 6% 8%

C432

C880

C1355

C1908

C3540

C6288

ci
rc

u
it

L = 4,000
Compaction Ratio 10

SRS
Hierarchical
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Compaction for FSMs

Input Sequence Target Circuit

 Logic

FFs

xn zn = out (xn, sn)

sn

p(xnsn) sn+1 = next (xn, sn)Markov Chain
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Higher Order DMTs
A lag-k Markov chain which correctly models the input
sequence, also models the joint k-step conditional
probabilities of the primary inputs and state lines

p(vi)

p(vj|vi)

p(vk|vjvi)

DMT0

DMT1

DMT2

vi

vj

vk
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High Order DMT Results

0% 10% 20% 30% 40% 50% 60%

b bara

d k17

mc

p lane t

sh iftre g

s1196

s1423

s5378

s820

s9234
Com paction Ratio  10

Order 1

Order 2
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New Program Program Synthesis

Architectural Simulation
Characteristic

Profile

RTL Simulation Power
Estimation

CPU’s
RTL

Model

Original Program

Instruction Level Compaction

M. PedramUSC

Characteristic Profile
• Instruction mix
• Average instruction size (if applicable)
• Clocks per instruction
• Branch prediction miss rate
• Instruction cache miss rate
• Data cache read/write miss rate
• Pipeline stall rate
• Speculative execution and  register renaming are

not considered
• Target micro-processor: A super-scalar pipelined

CPU with branch prediction (Intel’s Pentium chip)
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1. Block Allocation

2. Instruction Allocation

add op1, op2
xor op1, op2
mul op1, op2
mov op1, mem1
branch

3. Memory Allocation

mov op1, mem1

4. Operand Allocation/
    Instruction Scheduling

add op1, op2

reg1 reg4
reorder the sequence

memory space

Program Synthesis Procedure

M. PedramUSC

Results: Compression Ratio

1 10 100 1000 10000 100000

VORTEX

PERL

IJPEG

LISP

COMP

GCC

M88

GO
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Results: Accuracy

0 50 100 150 nano Joule

VORTEX

PERL

IJPEG

LISP

COMP

GCC

M88

GO

Energy per Instruction

Synthesized
Original
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Power Macromodeling

Macromodel
Equation Form

Model
Variables

Training 
Set

Low - Level
Simulation

Regression
  Analysis

Regression
Coefficients

Macro
Models

Module

Analytic Model
Reduction
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Dual Bit Type Model

Pwr = C0 + C1 ·S1 + C2 ·S2 + C3 ·S3 + C4 ·S4

Consider a data path block:

Sign bit

MSB region LSB region

S1 S2 : avg. switching activity of LSB
(MSB) region of operand 1

S3 S4 : avg. switching activity of LSB
(MSB) region of operand 2

Module

M. PedramUSC

Input/Output Data Model

Pwr = C0 + C1 ·S1 + C2 ·S2 + C3 ·S3

Consider a data path block:

S1 S2 : avg. switching activity of
operands 1 and 2

S3 : avg. switching activity of
output

Module

Jan 1998
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Bitwise Data Model

Consider a random logic block:

∑ ⋅+=
inputs iSiCCPwr 0

Si : avg. switching activity of
input signal i Module

      More parameters lead to a
higher degree of accuracy,
but increase the
computational overhead
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Cycle-Accurate Macro-Models

Cycle-
Accurate
Macro-
Models

Average
Power

Signal
Integrity

Power
Distribution

Peak
Power

DC
Voltage

Drop

Switching
Noise
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Statistical Macromodel
Construction

0

5

10

15

20

C1355 C1908 C2670 C3540 C432 C5315 C6288 C7552 C880 Mul16 Adder16

Erro r in  Cyc le
Po we r (%)

Erro r in  Ave rag e
Po we r (%)

Model Validation?

101110010…1
111011010…0
010000011…1
… 

Low-level
Simulation

Training
Set

Variable Selection based
on Sensitivity Analysis

Circuit

Database

Equation
Form

Initial Variable
Set

No Yes
DONE

Variable Selection based
on Sensitivity Analysis

Least Square Fit
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Power Optimization Flow
HW/SW Co-Design:

Partitioning and Mapping
Communication Synthesis

Datapath Synthesis:
Multiple Voltage Scheduling 
Resource Allocation/Binding

Controller Synthesis:
State Assignment

Interface Design:
I/O Encoding

Design Planning:
Floorplanning & Global Routing

Power/Delay Budgeting

Logic Synthesis:
Logic Minimization & Restructuring

Technology Mapping

Physical Design:
Placement & Routing
Resizing & Rewiring
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System and Behavioral Synthesis

Resource Allocation 
and Sharing

Interconnect Synthesis

Communication
Synthesis

Selective Shut-off
of System Modules

Multiple Supply 
Voltage Scheduling

HW-SW Partitioning
and Mapping
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RT-Level and Logic Synthesis

Logic Restructuring
and Minimization

   Technology Mapping

     Retiming

Precomputation or
 Bypass Logic

State Assignment 
and Bus Encoding

Gated Clocking
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Physical Design

Transistor Re-ordering under
  a DSM Delay/Power Model

   Gate Sizing under a
DSM Delay/Power Model

     Bounded-Skew
Gated Clock Routing

         Floorplanning with
Integrated Power Plane Design

Fanout Optimization under
a DSM Delay/Power Model

P/G Network Design for
Ground Bounce Control
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Summary
• CAD flows and tools can reduce power

dissipation in VLSI circuits and systems by a
factor of 5 - 8 X over the next three years

• Process and voltage scaling can provide
another factor of 8 - 12 X

• Commercial tools for gate-level and circuit-
level power estimation and optimization exist

• High level power analysis and estimation tools
are a key enabling technology

• Early Design planning and system-level design
and power optimization tools are needed
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