Technology Mapping and Packing for Coarse-grained, Anti-fuse Based FPGAs

Chang Woo Kang, Ali Iranli, and Massoud Pedram

University of Southern California Department of Electrical Engineering Los Angeles CA, USA

- Introduction
- Cell Library Construction
- Technology Mapping and Cell Packing
- Experimental Results
- Conclusion

Introduction

- Coarse-grained logic block architecture is widely used in the FPGA industry
 - Xilinx Virtex series has 8 LUTs in a configurable logic block
 - QuickLogic pASIC series has 26 inputs in a logic cell

Cost Assignment for Primitive Cells

$$cell_cost = \frac{s}{f \cdot c}$$

- Space usage, *s* : the amount of space in a pASIC cell that is used up by the primitive cell
- Freedom, *f* : the total number of places in a pASIC cell that the primitive cell can fit
- Coverage, *c*: complexity of the logic that the primitive cell can realize
- Notice that the inverter primitive cell does not have the minimum cost any more

The Coin-Change Problem

Problem statement

- Let $c_1, c_2, ..., c_m$ be the coin types of a currency. Let C_i denote the value of coin c_i in cents and K be some integer. We assume $C_1 = 1$. The problem is to produce K cents of change by using a minimum number of coins

Minimize
$$\sum_{i=1}^{m} n_i$$
 s.t. $K = \sum_{i=1}^{m} n_i C_i$

where n_i denotes the number of coins of type i

Solution

$$count[K] = \begin{cases} 0 & \text{if } K = 0\\ \min_{i:C_i \le K} \{count[K - C_i] + 1\} & \text{if } K > 0 \end{cases}$$

Different Ways of Packing Cells

	Combinations of primitive cells
1	$2S_5 + 2S_7$
2	$2S_4 + 2S_5$
3	$2S_5 + 2S_6$
i	$\sum_{i=1}^{7} C_{i,S_j} S_j$
35	$S_{3} + 2S_{7}$
36	$S_{3} + 2S_{4}$
37	$S_3 + S_4 + S_7$

- 37 different cases of completely utilizing a logic cell
- *C_{i,Sj}*: the number of primitive cells of type *S_j* in the *i_{th}* combination
- The packer must find optimal packing combinations in a bottom-up manner

Exact Problem Statement

• Given the different ways of packing a pASIC3 logic cell as described in the previous table and a logic netlist generated by the min-cost technology mapper, find the minimum number of pASIC3 logic cells needed to cover all primitive cells in the logic netlist, i.e.:

Minimize
$$\sum_{i=1}^{37} n_i$$
 s.t. $\forall j : \sum_{i=1}^{37} n_i C_{i,S_j} \ge \left| S_j \right|$

where n_i denotes the number of packings of type *i* and $|S_j|$ denotes the number of primitive cells of type *j* in the initial logic netlist

Analogy to the Coin-Change Problem

- After technology mapping, we count the number of primitive cells of each type, $|S_1|,..., |S_7|$. These are analogous to seven different target change counts
- The 37 different entries in the pASIC packing table are analogous to different currencies
- This is a multi-dimensional coin change problem, which can be solved optimally and efficiently by using a dynamic programming technique

Dynamic Programming Solution

$$count(|S_{1}|,...,|S_{7}|) = \begin{cases} 0 & \text{if } \forall j, |S_{j}| \le 0 \\ \\ \min_{i:\forall j, C_{i,S_{j}} \le |S_{j}|} (count(|S_{1}| - C_{i,S_{1}},...,|S_{7}| - C_{i,S_{7}}) + 1) & \text{otherwise} \end{cases}$$

- Note that we must track remaining unpacked primitive cells for all seven cell types at the same time
- Computational complexity $O(\prod_{i=1}^{7} |S_i|)$

	•	, 1		1,
HV1	perim	antal	R DO	otte
				SUILS

Circuits	Primitive cell count	51 0			Dynamic programming based packing			Packing improvement	
		Number of logic cells	Cell utilization (%)	CPU time (sec)	Number of logic cells	Cell utilization (%)	CPU time (sec)	Number of logic cells (%)	Cell utilization (%)
Alu2	193	76	65.87	0.08	51	100	50.27	32.9	34.1
Alu4	377	150	65.11	0.34	101	98.43	960.59	32.7	33.9
Арехб	349	154	59.86	0.37	117	80.23	306.24	24	25.4
Dalu	471	194	63.39	0.56	138	90.75	143.81	28.9	30.1
C1355	210	83	64.81	0.11	58	93.75	1.37	30.1	30.9
C1908	213	96	58.84	0.13	74	77.74	20.54	22.9	24.3
C432	108	45	65.85	0.03	31	100	13.36	31.1	34.2
C499	210	83	64.81	0.11	58	93.75	1.37	30.1	30.9
C3540*	657	268	64.22	1.2	191	91.89	56.21	28.7	30.1
C880	214	92	62.76	0.12	64	93.45	45.95	30.4	32.8
C5315*	764	333	59.97	1.94	256	79.09	42.97	23.1	24.2
C6288*	1457	664	55.19	13.11	593	61.84	19.14	10.7	10.8
C7552*	1052	413	64.94	3.7	312	86.51	86.06	24.5	24.9
Average								26.9	28.2

*The packing algorithm used segmented lists so as not to exceed the amount of available memory in the computer

Conclusions

- Proposed a minimum-area packing algorithm for coarse-grained, anti-fuse based FPGAs, comprising of library generation, technology mapping and cell packing.
- Solution of a multi-dimensional coin-change problem resulted in a polynomial time optimal solution to the cell packing problem
- Our algorithm resulted in an average of 27% fewer logic cells compared to a greedy algorithm