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ABSTRACT
Microprocessors with built-in Liquid Crystal Device
(LCD) controllers and equipped with Flash ROM are
common in mobile computing applications. In the first
part of the paper, a software-only encoding technique is
proposed to reduce the power consumption of the
processor-memory bus when displaying an image on the
LCD. Based on the translation mechanism of the LCD
controller, our approach is to start with the palette as a
coding table for the pixel buffer and then reassign the
codes according to the image characteristics.
Experimental results prove the efficacy of this approach;
power reduction reaches 29% for text-based and 17% for
graphics-based images. In the second part of the paper,
another software-only encoding technique is presented to
reduce the transitions on the processor-CompactFlash
bus. The device driver in Linux operating system is
modified to perform Bus-Invert encoding when the data is
read from or written to a Compact Flash file system. With
minimal software overhead, the transitions on the bus are
reduced by up to 25%.

1. Introduction

Mobile computing has evolved as a potent and influential
cultural phenomenon. Portable devices such as Personal
Digital Assistants (PDA), cellular phones, and GPS
navigators are indispensable components of today’s high
technology society. Because computing power is growing and
product size is shrinking, power consumption in
microelectronic circuitry has become a critical concern
because high degrees of power consumption severely limit
product usefulness.

For these kinds of applications, semiconductor vendors offer
highly integrated “system-on-chip” (SOC) solutions
[1][2][3][4]. These systems integrate a Reduced Instruction
Set Computer (RISC) microprocessor with many of the
essential peripheral controllers (e.g., memory controller,
Direct Memory Access controller, LCD controller, PCMCIA
controller, etc.) on the same chip. A system designer can thus
easily build a complete mobile system by combining this
SOC solution with different kinds of memory chips, IO

devices, power supplies, and clock generators [5][6]. Use of
the off-the-shelf commodity components lowers overall
system cost, reduces development cycle time, and
accelerates product introduction. Although these highly
integrated micro-controller solutions are quite useful, they
tend to restrict designers’ ability to perform aggressive
optimizations, including attempts to reduce the system
power consumption. Most of the hardware-level power
saving techniques, such as clock gating and dynamic voltage
scaling, cannot be applied to these kinds of systems because
of their fixed architecture and interface requirements.

Previous studies have proposed a number of low power
techniques for the Active Matrix LCD (AMLCD) [7][8], but
they are only applicable at the logic or gate levels and,
therefore, are not useful to us. In addition, many low power
bus-encoding techniques have been developed
[9][10][11][12]. However, these techniques require
hardware modification. The interest of this paper is in the
application of system-level or software-level techniques
(which are adjustable) to reduce power consumption on the
data bus and the IO bus.

In this paper, two power-saving techniques for embedded
systems that combine a micro-controller with an LCD and a
Flash ROM are presented. The target system is described in
Section 2. In Section 3, a low-power bus encoding technique
that uses the LCD frame buffer palette is presented. Section
4 introduces another encoding technique for reducing power
consumed on a PCMCIA bus. Section 5 concludes this
work.

2. Target System

The target portable system is built around the Intel
StrongARM SA-1110/SA-1111 evaluation boards [13]. SA-
1110 is a highly integrated microcontroller, including a CPU
core, a memory controller, an LCD controller, a PCMCIA
interface, and other peripheral controllers. One or more
Dynamic RAM chips, used as the main memory, are also
included on the board. The microprocessor is a standard off-
the-shelf product and cannot be modified. The memory
chips are also commodity parts with fixed standard
interfaces.
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The LCD controller needs a specific memory region to store
the displayed image data. This memory region is known as
the frame buffer, which is also the interface to the application
programmer who wants to draw graphical objects on the
LCD. Pixel information is stored in the pixel buffer.
Depending on the required color depth, 1, 2, 3, or even more
bytes are used to represent each pixel. For example, to
provide a 32-bit color depth, each pixel needs 4 bytes of
memory. Therefore, the size of the pixel buffer depends on
the total number of pixels and the color depth to be displayed.
The LCD controller reads the pixel information from the
pixel buffer at an acceptable rate (based on the refresh rate)
through the data bus (D_bus in Figure 1), interprets the pixel,
and sends the video signals (via L_bus in Figure 1) to LCD.

The PCMCIA interface provides control functions for
accessing external CompactFlash (CF) memory, which is
used as non-volatile memory in the system. The data transfer
between the micro-controller and the CF memory card take
place via the IO bus (P_bus in Figure 1).

Figure 1: The target system

3. Encoding for the Memory Bus

3.1 LCD background
As stated earlier, the video information for images that are to
be displayed on the LCD is stored in the frame buffer in a
bitmapped manner. The video controller reads the
information from the frame buffer and drives the LCD to
display the corresponding image. Consider an LCD that is
capable of displaying 320 by 240 pixels in a 24-bit color
depth. If the refresh rate is 60Hz, the data rate between the
frame buffer and the controller will be 320*240*24*60=111
M bits per second (bps)! This is an excessive amount of data.
Thus, in practice, a palette is used to relieve the data traffic.

A palette is simply a one-dimensional index table, which is
stored both on the main memory and the micro-controller. An
entry in the palette with index i (i=0,…, 255) is initialized
with ci, which in turn represents a 24-bit color. The controller
simply reads the color indices for pixels from the pixel buffer
via the D_bus and decodes them by using its local copy of the
palette. For a 256-color palette, the data rate between the
memory and the controller is 320*240*8*60=37 M bps,

which amounts to a 66% reduction in memory-controller
traffic. The tradeoff, of course, is that in this scheme, out of
224 colors, at most 256 different colors can be displayed on
the LCD at any time. Furthermore, some memory is required
on the controller side to store the palette. The color index
decoding performed by the LCD controller provides the
context for our software bus encoding approach.

During each LCD refresh cycle, power dissipation on the
D_bus is proportional to the total bit-level activity on the
bus when the color indices from the pixel buffer are sent to
the LCD controller. When the LCD controller is in the burst
mode , it sequentially fetches the index values stored in the
pixel buffer. This data transfer causes the bit-level activity,
which is in turn proportional to the expected Hamming
distance between color indices of consecutive index values.

We can think of the palette as an encoding table that assigns
an 8-bit color index to each of the 256 24-bit colors. By
changing this encoding table and rewriting the pixel buffer
values, we can reduce the activity on the D_bus by
minimizing the expected Hamming distance between
consecutive index values fetched on the bus. Note that the
displayed image will not change as a result of this palette
reordering and the corresponding pixel buffer rewriting

3.2 Problem formulation
In this section, we propose a technique for reducing the
transitions on the memory data bus that are generated when
the LCD controller reads the data in the pixel buffer. From
the previous description of the palette, we can see that the
palette and the pixel buffer can be reassigned to compose
the same image while reducing the switching activity related
to accessing the frame buffer.

Consider a palette containing 2k colors }...,{
1210 −

= kcccC .

Assuming that the data bus width is k, the data stream that is
present on the data bus when reading the pixel data from the
pixel buffer can be represented by a sequence of binary
values:

110 ..., −= lxxxX , where Cxi ∈ and l denotes the

pixel count. The total switching activity of X is calculated as
the sum of the Hamming distances between consecutive
binary values xi and xi+1 denoted as ),( 1+ii xxH . We attempt

to find an optimal palette assignment (i.e., a color
permutation) CC →:π such that the following objective

function is minimized:
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If the bus width is 4k, then the objective function becomes
4

4
0

( ( ), ( ))
l

i i
i

H x xπ π
−

+
=
∑ . This is because four pixels are

transmitted at the same time, therefore, the bit-level
transitions occur between codes for pixels i and i+4.
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Formulating and solving the corresponding problem is
straightforward. Details are omitted.

3.3 Palette encoding algorithm
Another way of stating the PA problem is to construct a state
transition graph G, where each color ci is represented by a
node ni in the graph. There exists an edge eij in the graph if
the two colors ci and cj are fetched on the bus consecutively.
The weight of edge eij, which is denoted by wij, is equal to the
transition probability tpij between ci and cj in the sequence of
binary values X. With this terminology and notation, the PA
problem can be restated as that of assigning index values

(codes) to the colors so as to minimize
2
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that this problem is identical to the problem encountered
during low-power state assignment [14][15]. This problem is
known to be NP-hard. It has been solved using a simulated
annealing (SA) algorithm. The solution quality can be very
good, but the excessive runtime of an SA-based algorithm can
be a concern. In this particular case, however, the SA
algorithm is run only once per image to create the color-
mapped image that will be stored in memory. At runtime, the
LCD controller simply fetches the pixel color indices from
the previously processed and optimized image file. This
scheme works for image files that are statically generated.

Given a color, its brightness (for example, as the average of
the R, G, and B values in an RGB color space) is calculated.
Next, the 256 colors that are present in the palette are sorted
by their brightness and use Gray code [16] to encode the
sorted list of colors. For example, brightness levels 0, 1, 2,
and 3 are assigned the Gray code sequence 0, 1, 3, and 2.
This heuristic is based on the observation that the color
brightness is likely to change continuously because of the
reflective surface of subjects such as the human skin. This
method works very well for black and white images where the
only relevant distance metric in the color space is the
brightness.

For color images, a more general distance metric can be
defined based on the chrominance and luminance values and
used for sorting the palette colors.

3.4 Experimental results
The images displayed in an embedded system are usually
from two sources: (1) the graphics user interface (GUI), such
as a window system, or (2) image files. For example, a
navigation system displays map images, which are pre-
produced and then downloaded. The proposed approach is to
modify the GUI or the image files in advance. The following
heuristic algorithm is used to solve the PA problem.

Figure 2 shows the histograms, which provide a plot of the
occurrence frequency vs. brightness for two images (“win1”
from Figure 3 and “elaine” from Figure 4). “win1” is
generated by a GUI and exhibits a sparse distribution,

whereas “elaine” is from an image file and exhibits a
continuous distribution function. Based on this, we classify
the images into “text mode” and “graphics mode.”

win1 elaine

Figure 2: Text mode vs. graphics mode histogram

Based on the techniques described in Section 3.3, a software
tool called Palladia (Palette Assignment Diagnostician) was
developed to achieve the desired frame buffer encoding.
The program implements two options: a Simulated
Annealing (SA) based algorithm and a Palette-Sorting (PS)
based heuristic.

The reduction in transition counts on the D_bus for two GUI
images depicted in Figure 3 is shown in Table 1. The SA-
based and heuristic algorithms reduce the switching activity
by 15% to 29%. We can see that the heuristic algorithm is
quite effective in spite of its much faster runtime and lower
computational requirement.

win1 win2

Figure 3: GUI benchmark images (a) win1 and (b) win2

Transition Count Saving %
Image SA-based

Algorithm
PS-based Heuristic

win1 29.3 25.4

win2 17.9 15.7

Table 1: Results for SA-based and PS-based heuristic
algorithms applied to win1 and win2

Table 2 shows the test results of the heuristic algorithm
running on the image files shown in Figure 4. Results for an
8-bit and a 32-bit D_bus are provided. Transition count
savings are slightly higher for the 8-bit bus.
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lena elaine pentagon

bellagio paris car

nyny montecarlo mgm

Figure 4: Photo/graphics benchmark images

Image Transition Count Saving %
8-bit 32-bit

lena 7.7 6.6
elaine 17.6 15.8

pentagon 18.8 17.7
bellagio 12.9 6.6

paris 11.7 4.9
car 15.2 13.9

nyny 12.6 8.0
montecarlo 10.7 7.6

mgm 12.6 7.8

Table 2: PS-based heuristic algorithm results for the
photo/graphics images

4. Encoding for the Compact Flash Bus

4.1 Compact Flash background
In this section, a software encoding technique for an IO bus is
presented. The power dissipated on IO busses in embedded
systems was drawn little attention previously because it was
small compared to the power consumed by external devices
(e.g., LCDs, hard drives, and network interface cards).

Mobile applications such as digital cameras, MP3 players,
and PDAs require small, lightweight, and power-conserving
devices for data storage. Therefore, solid-state storages such
as Flash ROM have emerged as an alternative to hard drives.
Flash ROM products are available to consumers in a card
form such as a PC card [17] or a CompactFlash (CF) card
[18]. Inside the card, are the Flash ROM chips and a
controller, which takes care of the PCMCIA/CF interfacing.
An advanced process technology is used to fabricate these

memory and controller chips. Compared to the internal
power dissipation of the card, the IO bus tends to consume a
lot of power, as is explained below.

Take CF as an example. Its form factor is quite small. The
50 signals of CF are compatible to (a subset of) the 68
PCMCIA signals. The latter is more mature and is well
supported by mobile computers. As a result, most embedded
computer systems support PCMCIA cards but not CF cards.
For a computer that does not support CF, a CF-to-PCMCIA
adaptor (defined in the CF specification) can be used.
Consider the power consumption of the IO bus in this
scenario: the voltage is fixed at 3.3V (to comply with the CF
and PCMCIA standards), the capacitance is high (the wires
inside the credit-card size PCMCIA adaptor card are
physically long), and the frequency is high because of the
speed of solid-state memory. Hence, the power dissipation
on the bus can be quite high.

According to the CF specification [18], a CF-card has to
support three operation modes: CF-Memory, CF-IO, and
CF-ATA (AT Attachment). The first two modes define the
card as a memory component attached to the PCMCIA bus.
To operate the CF-card in these two modes, the OS has to be
aware of this special memory device and control it with a
specific device driver. For this reason, the implementation of
the third mode, CF-ATA, is mandatory in order to provide
backward compatibility. In this mode, the card emulates an
Integrated Drive Electronics (IDE) hard drive, which is
virtually standard equipment for every IBM-compatible PC.
In the target system – as well as many other embedded
systems – the CF is treated as a hard drive, and therefore the
CF-ATA mode is in use.

The IDE interface protocol is defined in the ATA
specification [20]. Briefly, it provides seven 8-bit command
registers and one 16-bit data register. The IDE device is
controlled by a program (i.e., the device driver) that writes
different commands and parameters into the command
registers. These commands include read, write, erase sector,
format track, standby, idle, recalibrate, etc., while the
parameters include the sector number and the sector count.
In the read/write operation, after the command word is
written into the command registers the actual data can then
be read/written through the 16-bit data register. For
example, to read sectors, first the sector number, sector
count, and read command are written to the command
registers and then one or more sectors (512k bytes per
sector) are read from the data register. The controller inside
the CF-card internally translates the sector addresses into
memory addresses and performs the corresponding
operations to the Flash ROM chips. The translation is
transparent to the software, so any computer without any
additional software can use CF-cards as long as it supports
IDE devices. The software (i.e., the IDE device driver) can
access the hard drives by using either DMA or Program IO
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(PIO). DMA relieves the CPU load while PIO is used for
high-speed devices or when DMA is unavailable.

4.2 PCMCIA bus encoding
A software bus encoding technique used to reduce the
transitions on the PCMCIA bus is presented here. The goal of
this technique is to analyze the data (files) on the CF-card off-
line. According to the analysis results, the data in the files are
processed by a bus-invert algorithm [11] and then stored back
to CF. The processing steps are as follows. The file is divided
into blocks of data. Each block is analyzed to derive the
“best” inversion pattern. The 16-bit wide inversion pattern is
exclusive-or’ed with all the 16-bit wide words in the block,
and the results are written back to the file. Of course, the
inversion pattern for each block is also stored in the file so
that performing another exclusive-or operation with the
encoded value can restore the original value. When the file is
loaded into the main memory, the device driver of the CF-
card recovers the data by performing the necessary exclusive-
or operation on the fly.

The idea is simple but different from a typical bus invert
technique in the following ways. (1) The CPU performs the
inversion without needing extra hardware. (2) The calculation
of the inversion pattern per block of data is made at the
compilation time by solving an optimization problem (which
we call the inversion pattern selection problem or the IPS
problem). (3) The redundant information is carried in the file
header instead of being sent along with the data (i.e., using
extra bus signals). (4) The inversion pattern is changed for
each block of data to adapt to the specific characteristics of
the block.

4.2.1 Implementation details

If the sectors are read into memory in the PIO mode, the data
will stay in the data cache. For example, the StrongARM SA-
1110 has an 8KB main data cache, which is large enough to
cover a 4KB page in ARM Linux. The inversion operations
can be performed efficiently at a maximum clock frequency
of 206 MHz by a loop consisting of five instructions (load the
word, conditional XOR, store the word, rotate the invert
vector, and branch). In addition, the remaining unused
components can be put into sleep mode during the inversion
period to reduce the overhead.

For ARM Linux, we modified the IDE device driver (i.e.,
linux/drivers/ide/ide-disk.c) so that it inverts the data after
(before) a sector is read from (written to) the CF-card. Notice
that the encoding occurs during not only the regular file
read/write operations but also the page in/out events when the
CF-card is used as a swap device.

4.2.2 IPS problem formulation

The problem of finding the optimal inversion pattern (α) can
be formulated as the following minimization problem:

∑
=

++ ⊗⊗⊗
l

i
iiii xxxxMIN

0
11 },{ α

where xi denotes the codes for the words in a block of data.
This problem, which is also known as the partial bus-invert
problem in the literature, has been shown to be an
intractable problem [19]. A number of heuristic algorithms
have been proposed to solve the IPS problem. The goal is to
reduce the power consumption of a mobile system in which
the applications are pre-determined. Therefore, the
optimization problem can be solved off-line without
worrying about power dissipation overhead for solving this
optimization problem. In practice, a branch-and-bound
algorithm is used to find the best possible inversion pattern.
Since the number of words in a block is rather small and the
bus width is limited, this approach is practical.

4.2.3 Determining the block size

The standard bus-invert technique uses a fixed inversion
pattern α, which is a pattern of all 1’s. Better results can be
achieved by using different patterns for different blocks of
data (pages or sectors). A smaller block size increases
power savings on the bus but also tends to increase the
overhead in terms of the space for inversion pattern storage
and the time spent on performing inversion during the
decoding phase (the encoding phase is not of concern since
it is done on a non-power-constrained processor).

4.2.4 Preserving data cache entries

In the encoding algorithm described above, it is necessary to
perform an exclusive-or operation on all the data entries that
are written to or read from the CF. Assume that the data
cache is not flushed upon entering a system call and that
DMA is used for data IO. The CF data coding will
potentially flood the cache with block data and change the
cache behavior. To solve this problem, we can disable
(freeze) the cache prior to accessing the main memory to
perform the exclusive-or operation. After the
encoding/decoding process, cache is unfrozen and the
normal computational processes will continue their
execution on a cache that is kept “hot”.

4.3 Experimental results
The SPEC95 integer benchmarks were used to generate the
data traces. Consider a 16-bit PCMCIA bus. First, two
software applications were used to examine the effect of
smaller block sizes. Data is divided into blocks. In each
block, the optimal inversion pattern was found. The numbers
of transitions in different block sizes are reported in Table 3.
As expected, the results improve monotonically as the block
size becomes smaller, but the marginal improvement is not
impressive. This suggests the use of a larger window size of
1024 or even 4096 bytes in order to minimize the storage
space and computation time requirements. The 4KB size is
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more desirable for us because it matches the page size in
Linux.

Block Size 256 512 1024 4096
compress 81.5% 80.1% 78.9% 76.7%

ijpeg 87.6% 85.7% 85.1% 83.1%

Table 3: Results as a function of block sizes

Eight benchmarks with a page size of 4 KB were tried.
Results are reported below.

Length Opt-4k 93e5 BI
compress 88k 0.82 0.90 0.94

gcc 1,286k 0.75 0.81 0.90
go 500k 0.71 0.75 0.87

ijpeg 167k 0.78 0.84 0.93
li 98k 0.75 0.79 0.91

m88ksim 177k 0.79 0.87 0.93
perl 286k 0.76 0.80 0.89

vortex 813k 0.69 0.74 0.88

Table 4: Results of comparing adaptive partial bus invert,
partial bus invert w/ fixed inversion pattern, and full bus invert

The first column lists the data trace lengths for each of the
benchmarks. The remaining three columns report the ratio of
the bit-level transition count with the bus-invert encoding to
the count without the encoding. Thus a smaller ratio reveals a
larger power saving. In the second column, we used the
adaptive partial bus-invert algorithm per a block size of 4KB.
In the third column, “93e5,” the fixed pattern 0x93e5 (hex) is
used for all the files. This particular pattern was chosen
because it happens to be the most common optimal-inversion
pattern in all of the applications that were tried. The last
column, BI, lists the original bus-invert results for reference.

Experimental results imply that with a globally fixed
inversion pattern, the transitions on the IO bus can be reduced
by between 10-26%. Because the pattern does not change
from block to block, there is no need to store the inversion
patterns. In other words, by a simple modification of the
device driver, the power dissipation can be reduced with zero
hardware cost and minimal software overhead (which is due
to dynamic encoding and decoding of the data that is written
to and read from the CF). Higher savings can be obtained by
changing the inversion pattern per blocks of size 4096. This
is a tradeoff that system developer needs to consider.

5. Conclusions

Two software approaches to reduce the power consumption
of the memory and IO busses in an embedded system
equipped with LCD and Flash ROM were proposed. For the
memory bus, the palette, which is the translation mechanism
of the LCD controller, was used as a coding table and
reassigned the palette and rewrote entries in the pixel buffer
according to their correlation to the image. We formulated the
problem as a state assignment problem and presented an SA-

based and an efficient heuristic algorithm for solving it.
Experimental results proved the efficiency of this approach:
there is up to a 29% power reduction for the text-mode
images and a 17% reduction for the graphics-mode images.
For the PCMCIA bus, up to 26% of the transitions can be
eliminated by a very simple modification of the OS kernel.
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