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Exam-
ples

Before Mapping After Mapping
Area Power Area Delay Power

5xp1 0.93 0.98 0.86 0.82 0.90
Z5xp1 0.97 0.91 0.95 0.78 0.84
9sym 0.89 1.01 0.83 0.86 0.87
9symml 1.24 1.02 1.15 1.12 0.84
apex5 0.99 0.96 0.96 0.93 0.95
apex6 0.99 0.96 1.00 1.24 0.96
apex7 0.99 0.99 0.97 1.22 0.98
b12 0.96 0.99 0.99 0.92 0.96
bw 1.01 0.87 1.01 0.80 0.90
clip 1.02 0.91 0.94 1.16 0.91
cps 0.99 0.97 1.00 1.17 0.97
des 1.01 1.01 1.02 1.07 0.99
duke2 1.01 1.01 0.99 1.13 0.97
e64 1.00 0.51 0.83 1.16 0.50
ex5 0.99 0.89 0.99 0.97 0.91
example2 0.99 0.96 1.01 1.03 0.97
frg2 0.94 0.86 0.94 1.02 0.86
k2 0.99 0.91 0.98 1.14 0.90
misex1 1.00 0.90 0.96 1.22 0.94
misex2 1.00 0.87 0.97 1.50 0.91
pair 0.99 0.98 0.99 1.04 0.97
pdc 1.00 0.90 1.00 1.09 0.89
rd84 0.97 0.85 0.84 1.13 0.76
rot 0.98 0.94 0.96 1.10 0.95
spla 1.00 0.93 0.99 1.10 0.91
squar5 0.93 0.89 0.86 0.70 0.87
t481 1.00 0.97 1.00 1.01 0.98
ttt2 0.97 0.91 0.90 1.11 0.88
Average 0.99 0.92 0.96 1.05 0.90

Table 2: Area, delay and power statistics for power script
(normalized with respect to results for the area script).
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Example Before Mapping After Mapping
Area Power Area Delay Power

5xp1 113 41.54 118784 31.96 3.60
Z5xp1 116 47.39 122032 34.62 4.19
9sym 211 96.23 226896 21.76 8.21
9symml 186 73.64 205552 22.51 6.10
apex5 777 114.94 934032 41.38 9.87
apex6 743 268.51 814320 25.13 24.76
apex7 245 80.53 266800 20.44 7.44
b12 79 19.28 88160 12.79 1.80
bw 158 38.93 170288 40.79 3.86
clip 132 59.46 147552 21.90 4.83
cps 1237 219.53 1379008 40.67 19.15
des 3462 1077.95 3691584 173.06 95.61
duke2 446 96.13 498800 33.42 8.35
e64 253 34.05 294176 111.02 2.62
ex5 345 89.20 345216 26.86 8.11
example2 331 80.15 362384 19.31 6.98
frg2 886 187.66 875568 42.01 16.34
k2 1135 114.05 1243056 33.13 9.85
misex1 52 15.50 56608 14.28 1.47
misex2 103 22.09 114144 12.43 2.14
pair 1600 504.70 1676432 43.96 43.42
pdc 410 119.24 437552 21.33 10.36
rd84 145 48.60 161472 19.77 4.12
rot 671 204.30 719664 31.54 19.60
spla 648 160.79 756320 25.37 13.30
squar5 56 12.22 59392 23.68 1.08
t481 881 79.68 813856 27.90 6.68
ttt2 219 61.13 232464 17.73 5.29

Table 1: Area, delay and power statistics for area script.
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Figure 8:  Using the reduced don’t care
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Figure 7:  Minimal Support using Reduced off-sets

1: function Generate_MLS(F)
2:  F is a Boolean function with cubes (c1,...cg)
3: begin
4: SupBar = 0
5: foreach ( cube cr of the cover) do
6: Rr = findReducedOffset(F, cr)
7: RRr = transformToNewSpace(Rr)
8: SupBar = SupBar + RRr
9: endfor
10: Support = SupBar
11: return Support
12: end
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Figure 6:  Candidate nodes for SDC computation
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Figure 5:  Computing the Power Relevant
Observability Don’t Care for node g
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Figure 4:  Contradictory decisions on signal
probability of g while optimizing i1 and i2
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Figure 3:  Don’t care regions for functions f and g
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Figure 2:  Partition of the space of primary inputs for
function f and g
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5    Results
The procedures presented in this paper were implemented in a program called

power_full_simplify and the results for example benchmarks were compared to those of the
full_simplify command in the SIS package.

Each example in the benchmark set is first optimized using script.ruuged and then mapped for
minimum power. The same example is also optimized using the power script (where full_simplify is
replaced with power_full_simplify) and then mapped for minimum power.

Table 1 shows the results of the optimization after running the script.rugged on benchmark
examples and then mapping for minimum area. Columns 2 and 3 give the area and power of the net-
work right after the full_simplify command. The area is given as the number of literals in the factored
form and the power is estimated using the factored form model. Columns 4, 5 and 6 give the network
area, delay and power after technology mapping using library lib2.genlib where area, delay and power
are computed using the library parameters. Power is also measured under a zero delay model and ran-
domly set input signal probabilities.

The results in table 2 are generated by replacing the full_simplify command in the script.rugged
with the power_full_simplify command and then mapping for minimum power. All results are normal-
ized with respect to results in table 1. Again, columns 2 and 3 give the area and power estimates
before mapping and column 4, 5 and 6 give  area, delay and power of the mapped networks computed
using the library parameters. As results show, on average we were able to obtain %10 improvement in
power with %4 reduction in circuit area while increasing the circuit delay by %5.

Our experiments also show power_full_simplify to be on average 2 times slower than
full_simplify.

We expect to obtain better results if external don’t cares are given for the circuits under consid-
eration. The circuits we used had no external don’t cares; consequently, the ODC for these networks
were usually small.

6    Conclusion
In this paper a method is presented that allows for minimizing the power consumption of a net-

work using the don’t care conditions and local function minimization. Using the techniques presented
here it is possible to guarantee that local node optimization will not increase the power consumption
in the transitive fanout nodes. This means that local nodes can be optimized without concern for how
changes in the function of the current node affect the power consumption in the rest of the network. A
method for optimizing the local function of node was also presented where the concept of minimal lit-
eral and variable supports have been used to find the lowest cost input supports and then lowest cost
implementation of the function.

Table 1: goes here.
Table 2: goes here.
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Proof: Proof omitted for brevity. See [12].
■

4.2   Node Minimization using Minimal Variable Supports
Once the set of minimal variable supports for a function is computed, a decision has to be made

as to which set of variables to use for implementing the function. A simple cost function for minimiz-
ing power consumption is to count the number of variables in the variable support. The drawback with
this cost function is that it does not consider the switching activity of fanin variables that constitute
the support variables. A better cost function is to choose a variable support where the sum of the
switching activity for all the variables in the support is minimum. We refer to this procedure as the
“minimal switching activity support” procedure. Once the new variable support for a node is deter-
mined, the new function of the node is computed by dropping variables not in the support.

When a variable support is selected for the function, a part of the don’t care is assigned to elim-
inate the variables not in the selected support of the node. This operation results in a new function
fnew. However a subset of the don’t care can still be used to minimize the cover of fnew. This subset of
the don’t care is called reduced don’t care dcreduced.
Theorem 7 Given a cube v representing the variables removed from the on-set of a function f and dc,
don’t care for function f, dcreduced the reduced don’t care for f, as given below, is the maximal set of don’t
care that can be used to optimize f without including variables from v in f.

where v is the bit-wise complement of v and  is the universal abstraction of dc with respect to v.

Proof: Proof omitted for brevity. See [12].
■

 Figure 8.a shows the on-set and don’t care for a function f. Figure 8.b shows the don’t care
assignment which is used to eliminate variable x from the support to obtain fnew and figure 8.c shows
the reduced don’t care for function f after variable x is eliminated from the k-map. Using reduced
don’t care for this node, one product term is removed from the on-set of the function f. Given a func-
tion f, its don’t care set dc and a variable support v, the function of f is optimized by first finding fnew
using f and v, dcreduced is also computed using dc and v and finally function of fnew is optimized for
minimum area using dcreduced.

This procedure will provide a low area implementation which has the lowest sum of switching
activities on the immediate fanins of the node. It is however possible for a variable support with a
higher switching activity support cost to have a smaller factored form and hence have a lower power.
In order to select a variable support which also reduces the node’s power estimate as much as possi-
ble, we compare the power estimate for the node implementation of the k lowest cost variable sup-
ports where k is a user defined parameter. Note that our node power cost function in the factored form
as given in equation 3, also takes into account the output load and switching activity. Hence by select-
ing the lowest power cost implementation, we will select a solution which minimizes all factors con-
tributing to the network power consumption.

dcreduced Cv dc( ) dcv dcv⋅= =

Cv dc( )

Figure 8: goes here.
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The last equation is by definition equal to the reduced-off-set for cube c1
r . Note that the reduced

off-set for a cube p of the on-set if unate in all variables. Therefore it is not necessary to transform
the problem into R2n space when finding the support for a single cube of the on-set.

■

Theorem 5 Given F = {c1
1, c1

2, ...., c1
g} a cover of the on-set and {R1, R2, ...Rg} the set of correspond-

ing reduced off-sets for an incompletely specified logic function f(x1,...xn), the set of all minimal literals
supports of f is given by:

where  is obtained by transforming  into R2n space as described in algorithm 1.

Proof: Proof omitted for brevity. See [12].
■

This approach greatly reduces the complexity of computing the set of all minimal literals sup-
ports of an incompletely specified function when the size of don’t care set is large. Using this theo-
rem, the procedure shown in figure 7 presents an algorithm for generating the set of all minimal literal
supports of an incompletely specified function.

4.1.3  Computing Minimal Variable  Supports Using Reduced Off-sets
The procedure in section 4.1.2 computes the set of all minimal literal supports of a function. For

some optimization procedures, it may not be necessary to differentiate between the positive and nega-
tive literals of a variable. This means that it is sufficient to compute the set of all minimal variable
supports of the function.

The advantage of computing the variable support is that it is no longer necessary to transform
the problem into R2n space where n is the number of variables. The following theorem provides a
method for computing the set of all minimal variable supports.
Theorem 6 Given F = {c1

1, c1
2, ...., c1

g} a cover of the on-set and {R1, R2, ...Rg} the set of correspond-
ing reduced off-sets for an incompletely specified logic function f(x1,...xn), the set of all minimal literals
supports of f is given by:

(23)

where  is obtained by replacing all positive literals in  with negative literals.

Hr xk xk cr
1⊇ xk c j

0⊇,〈 | 〉
k
∑

j 1=

h

∏=

Hr xk xk cr
1⊇ xk c j

0⊇,〈 | 〉
k

∏
j 1=

h

∑ Rr= =

H RRr
r 1=

g

∏=

RRr Rr

Figure 7: goes here.

H R̂r

r 1=

g

∏=

R̂r Rr
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[8] in each cube of C1 . The following example shows how these algorithms are used.
Example 2:

Consider the following incompletely specified function F where g =2 and h =1:
on-set(F) =x1x2x3x4 + x1x2x3x4

off-set(F) =x1x2x3x4

by setting: x5=x1, x6=x2, x7=x3, x8=x4 we will have:
on-set(f) =x5x6x3x4 + x5x2x3x8

off-set(f) =x1x6x3x8

Therefore:
H11 = x6 + x3 H21 = x8 + x3 H  =  x6.x8 + x3

The set of all minimal literal supports of F is given as:
{x2.x4}, {x3}

This means that two possible implementation of F are:
F = x3 or F = x2 + x4

■

4.1.2  Computing Minimal Literal Supports Using Reduced Off-sets
The method described in [8] for computing the set of all minimal literal supports requires that a

cover of the on-set and off-set of the function be computed. The off-set has to be computed by com-
plementing the union of on-set and don’t care of the function. This operation is in general computa-
tion expensive and the resulting off-set might have an exponential size. An example of this function is
the Achilles Heel function which has n terms in the cover of on-set and 3n terms in the cover of
off-set. Therefore it is desirable to compute the set of all minimal literal supports without computing
the off-set of the function. In this section we present a method for computing the set of all minimal lit-
eral supports of a function without computing the off-set by using the ideas behind reduced off-sets.

Reduced off-sets are introduced in [16] by observing that some minterms of the on-set or don’t
care cannot be used to expand a cube of the on-set. Assume p=a.b and the complete off-set is a ⊕ b.
Then the reduced off-set of p is (a + b) which is all that is needed to expand p.

Definition 9 (Malik [16])Given a cube p of a function f, Rp, the reduced off-set of function f with
respect to cube p is obtained by including all minterms of the on-set that cannot be used to expand p, in
the off-set of the function.

It is also shown in [16] that the reduced off-set of a cube is a unate function and therefore has a
unique minimal representation in the SOP form. A procedure is then presented for computing the
reduced off-set of each cube in the function where reduced off-sets are computed without computing
the complete off-set of the function.

The following theorem shows how reduced off-sets are used to compute the set of all minimal
literal supports of a function.
Theorem 4 Given a cube c1

r of the cover of the on-set of an incompletely specified function and Rr cor-
responding reduced off-sets for c1

r , Hr , the set of all minimal literals supports of c1
r is given by:

(21)

Proof: Given {c0
1,..c0

h}, a cover of the off-set for f, define:

(22)

By definition:

Hr Rr=

Hr Hrj
j 1=

h

∏=
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The procedures presented in this section compute a set of local don’t care for the function that is
being optimized. This local don’t care guarantees that global power is not degraded while the node is
being optimized and also allows for expressing the node function using a new variable which may
potentially result in a lower power consumption. In the next section technique using minimal literal
and variable supports are presented to optimize the local function of a node for low power.

4    Node Optimization Using Minimal Variable Supports
The goal of node optimization for power is to minimize the power contribution of the node to

the overall power consumption of the network. This requires that the combination of the node power
at the inputs and the output as well the estimate for the internal power of the node be minimized. In
this section we present a method for minimizing the power of the node by reducing load on high activ-
ity inputs of the network. In this section we first present a more efficient method for computing the set
of minimal literal and variable supports of the nodes in the network. The set of minimal supports
gives the flexibility in implementing the node function using different sets of variables. We then pro-
pose techniques for selecting a node support which will lead to a reduction in the node input power.

4.1   Minimal Supports of Functions

4.1.1  Minimal Literal Supports
Given an incompletely specified function ff, it is often possible to implement ff using different

sets of literals. For example let F = a.b and DF = a ⊕ b. This function can be simplified to F = a or F
= b. Then set {{a}, {b}} is the set of all minimal literal supports for node F.

The problem of finding the minimal literal support of a function is stated as follows.
Problem: Given C1={C1

0, C1
1,...., C1

g}, the cover of the on-set and C0={C0
0, C0

1,...., C0
h}, the cover of

the off-set of a function F(x1, x2,.... xn) ∈Rn, find the set all minimal literal supports of the function F.
A procedure for finding the set of all minimal literal supports of a function is presented in [8].

The procedure starts by translating the problem into the R2n space. The reason for this transformation
is that each variable in the R2n space represents the logical event that a positive or negative literal of
the function inputs remain lowered. The transformation is done by replacing the complement of vari-
able xi in the on-set with a new variable xi+n. The positive occurrences of variable xi in the cubes of
the off-set is replaced with the complement of the new variable xi+n. A new function f(x1, x2,.....x2n)
∈R2n is obtained with cover c1={c1

0, c1
1,...., c1

g} for the off-set and cover c0={c0
0, c0

1,...., c0
h}. A

function Hij is then computed for each cube c1
i of the on-set and c0

j of the off-set as defined in this
equation:

. (20)

This function corresponds to the union of the set of literals where the presence of each literal
results in an empty intersection between cubes c1

i and c0
j. H is then defined as  where

cubes of function H give the minimal support sets of function f in R2n. The set of variables in R2n is
then transformed back to Rn by replacing variables n+1 through 2n with the complement of the vari-
ables 1 through n. Performing this operation on functions f and H will result in functions F and the
minimal literal support for function F.

Once the set of all minimal literal supports of a function has been computed, a literal support is
selected (see section 4.2 for discussion on selecting a support) to implement the function. This prob-
lem is stated as follows:
Problem: Given C1={C1

0, C1
1,...., C1

g}, the cover of the on-set for a function F(x1, x2,.... xn) ∈Rn, and a
minimal literal support set given as a set of literals MLSF={lit1, lit2,..., litk}, find the minimal irredundant
form of the function F.

The solution to this problem is obtained by raising all literals which are not a member of set MLSF

Hij xk xk ci
1⊇ xi c j

0⊇,〈 | 〉∑=

H Hij∏=
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substitution results in a lower cost implementation.
It has been shown [17] that using SDC due to any node in the network for simplifying the func-

tion of a node f does not result in changing the global function of f or any other node in the network.
This means that using SDC does not change the signal probability or switching activity of any of the
nodes in the network. Therefore SDC may freely be used to optimize the function of nodes without
concern that switching activities may increase. Successful use of SDC may however result in using a
new variable v in the function of the node being optimized. This results in a load increase at the output
of node nv generating variable v. If the switching activity of the new variable is high, then increasing
load on this variable may result in an unexpected increase in the power consumption of the network. It
is therefore important to take into account the switching activity of nodes that are being considered
for possible substitution in the function of node that is being optimized.

The approach presented in [21] for using SDC consists of identifying a set of nodes that with
high probability may be substituted in node f being optimized. These nodes are identified as all nodes
whose immediate support is a subset of the immediate support of node f. The SDC due to each of
these candidate nodes is then included in the don’t care of f. For power optimization, we use the fol-
lowing approach for finding the set of candidate nodes whose SDC will be included in the don’t care
of a node f. Figure 6 shows the transitive fanin and fanout nodes of node f in a Boolean network. SDC
of nodes in the transitive fanout of node f cannot be included in the don’t care of f. All other nodes in
the network may be substituted into f if their primary input support is a subset of the primary input
support for node f. In order to select a set of candidate nodes, we first find all nodes that are not in the
transitive fanout of f and whose primary input support is a subset of the primary input support of f.
Among these nodes we then select nodes whose switching activity is below a user defined threshold
value. Nodes g, m, n and p show such candidate nodes.

The SDC due to a node g (see figure 6) whose immediate support is a subset of the immediate
support for node f is easily included as g⊕F(g). In order to include the SDC due to nodes that do not
share the same immediate support as f (node m in figure 6), it is necessary to include the SDC for all
nodes that are in the transitive fanin cone of f and transitive fanin cone of m. This is necessary since
successful substitution of m into f requires that the unsatisfiable conditions relating the values at the
output of node m and all immediate fanins of f be known. The first problem with this approach is that
including the SDC for all these node will result in also considering them for possible substitution into
f while f is being optimized and this may not be desirable if these nodes have a high switching activ-
ity. The second drawback is that this operation may prove to be expensive when the number of nodes
in the transitive fanin cones of f and m are large. An alternative approach for including SDC of nodes
that do not share the same immediate support as f is proposed here by observing that given a Boolean
network with n primary inputs and m internal nodes, the range of Bn, space of primary inputs onto
Bn+m, the space of all nodes in the network, gives the set of all satisfiable conditions in the network.

Assume an internal node f with fanins {i1, ..., il} is being optimized while considering possible
substitution of nodes {n1, ..., nk} into function of node f. The complement of range of the space of pri-
mary inputs by F={i1, ..., il, n1, ..., nk} gives all unsatisfiable conditions in space of function F which
is used as the SDC set while optimizing node f. Using this technique, it is no longer necessary to
include the SDC due to nodes which are not good candidates for substitution into function of node f.

Figure 6: goes here.
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3.7   Extensions to DAGs
The approach used to analyze a tree network is directly used to analyze a general Boolean net-

work. However, in a general DAG, the number of don’t care regions for a node is larger than the num-
ber of don’t cares regions for trees. The upper bound on the number of don’t care regions for a node g
in a DAG is given by  where k is the number of transitive fanout nodes of g. This for example is
possible if node g has k immediate fanout nodes.

The don’t care used for optimizing node g in a DAG is calculated using the following equation.

(18)

where PODCg(fi) gives the power relevant observability conditions for node g through fanout edge fi
and is computed using equation 14. Note that equations 14 or 17 provide maximal power relevant
don’t care sets for tree networks. This maximality does not however hold when equation 18 is used
[21]. MPODCg(fi) computed using equation 17 can also be used to compute MPODCg. However,

 for each fanout fi of g is computed using the following equation derived by extending
lemma 7 and theorem 3.

(19)

3.8   Computing Compatible Observability Don’t Care Conditions for Power
The analysis presented in the previous sections computes the maximal set of power relevant

observability don’t cares for nodes in a tree network. In general it is desired to compute power rele-
vant observability don’t care sets that can be used to optimize all nodes without recomputing the don’t
care sets.

The equations for computing the power relevant observability don’t cares have been derived by
modifying the part of don’t care that is propagated in the network (the second term in equation 6)
without making any assumption about the first part in this equation which gives observability condi-
tions for immediate fanout nodes. The operations to generate compatible don’t care sets however
modify the first term in equation 6 without making any assumptions on the don’t care being propa-
gated. The equations for computing power relevant don’t cares are easily extended to generate com-
patible (in the sense that they can be used to optimize nodes without recomputing the don’t care sets)
by replacing ODCf

g in equations 14 and 17 with that computed in equation 6.
Using the procedures presented in this section, we calculate the set of maximal compatible

power relevant local don’t care or maximal compatible monotone power relevant local don’t care for
nodes in the network which is then used to optimize the local function of nodes without any concern
on degrading the global power consumption of the network.

3.9   Power Relevant Satisfiability Don’t Cares for Low Power Optimization
In a Boolean network, some combinations for the values of the internal nodes are not possible

no matter what input vector is applied at the primary inputs of the circuit. If a network has n primary
input nodes and m internal nodes then satisfiability don’t care conditions (SDC) for a network contain
all impossible combinations in the space of Bn+m. The contribution of each node in the network to the
SDC of network is given in definition 2. In this sense we define SDC due to a node g as g⊕F(g) where
g is the variable at the output of node g and F(g) is the function of node g in terms of its immediate
fanins. Satisfiability don’t cares are usually used to substitute a new variable into a function if this

2 3
k⋅
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tive fanout cone of f. The part of MPODCf that makes changes in f observable at the transitive fanout cone
of f is:

which is all points in MPODCf that are not in ODCh
f. Then, considering that ODCh

f ⊆ MPODCf:

This proves the claim of this lemma.
■

This lemma provides us with a method for computing the observability don’t care conditions for
node g (Figure 5) that guarantees that changes in g will not increase the switching activity of transi-
tive fanout nodes of f. Using the result of this lemma, the following theorem provides a don’t care
computation technique that guarantees a monotonic reduction in the power consumption of all nodes
in the network.
Theorem 3 Consider nodes g, f and h (figure 5). Assume f has been optimized using MPODCf resulting
in new_f where new_f is the global function of node f after optimization. PMPODCg, Propagated Mono-
tone Power Relevant Observability Don’t Care for node f, as defined here, gives the maximal set of don’t
care conditions that when used in optimizing node g, guarantees that any changes in the function of g
does not increase the current switching activity of node f or any node in its transitive fanout cone.

(16)

Proof: Proof is obtained by combining theorem 1 and lemma 7. See [12] for details.
■

Given a node g and its fanout f, MPODCg the monotone power relevant observability don’t care
for node g (which is used to optimize the function of g) is calculated using the following equation:

(17)

Once MPODCg is used to find new_g (the new function for node g), PMPODCg is calculated
using a procedure similar to the procedure proposed for computing PODCg in section 3.5 (where the
equation for PPODCg is replaced with that for PMPODCg given in theorem 3) and stored at node g
for computing the don’t care conditions for fanins of g.

The advantage of using the techniques proposed in this section is that it guarantees that local
optimizations not only improve the local power, but also guarantee a monotone reduction in the
switching activity of other nodes in the network. These filters however result in a smaller don’t care
sets while optimizing the local function of a node and this means that it may not be possible to obtain
as much reduction in the power contribution of the node to the network power if the power don’t care
filters were not being used. Therefore care should be taken in using these filters in order to keep a bal-
ance between the available don’t care for local optimizations and the don’t care being used to guaran-
tee an overall reduction in the global power due to any local changes.
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The following equation is used to computed the power relevant observability don’t care for an
internal node of Boolean network.

(14)

ODCf
g gives all the conditions that make changes in g unobservable in the function of f while

PPODCf gives the maximal conditions that guarantee that any changes in the of function g will not
increase the switching activity of node f (theorems 1 and 2).

This equation provides a recursive procedure for computing the PODC of all nodes in a tree net-
work where each node is optimized after all its fanout nodes. The procedure starts at the primary out-
put of the network where PODC is equal to the external don’t care defined by the user. After a node f
is optimized using PODCf, PPODCf (using equation 13) and f_new (the new function of node f after
optimization) are computed. PPODCf is then stored at node f for future reference. When node g, fanin
node of f, is being optimized, PPODCf that was stored at node f is used to compute PODCg. The same
procedure is recursively applied until all the nodes are optimized.

The procedure proposed here for computing PODCg guarantees that as a node g is optimized,
the switching activity of its immediate fanout node f does not increase. This procedure does not how-
ever make any assumptions on the effect of changing g on the switching activity of nodes in the tran-
sitive fanout of node f (e.g. node h) as explained next. In [12], it is shown that after network
optimization using the procedure presented in this section, the switching activity of each node in the
network is less than or equal to its switching activity immediately after it was optimized. This means
that while optimizing different nodes in the transitive fanin of a node f, it is possible to increase or
decrease the switching activity of f. However, this new value is always no larger than what it was
when node f was first optimized. In the next section we present a method that guarantees a monotone
decrease or no change in the current switching activity of all nodes in the network as local node func-
tions are being optimized.

3.6   Monotonic Reduction in Global Power
As discussed in the previous section, it is desirable to obtain a monotonic decrease in the global

power consumption during node optimizations. The following lemma is used in developing a don’t
care computation technique that achieves this goal.

Definition 8 Given a node g and its immediate fanout node f (figure 5), MPODCg, the Monotone Power
Relevant Observability Don’t Care for node g is defined as the observability don’t care conditions for g
that guarantee changes in the function of g within this don’t care set, do not increase the current switch-
ing activity of nodes in the transitive fanout cone of f (excluding node f).
Lemma 7 Consider nodes f and h (figure 5). Assume MPODCf has been computed and f has been opti-
mized using MPODCf resulting in new_f. MODCf , as defined here, gives the maximal set of conditions
that when used in computing the observability don’t care conditions for the fanins of f, guarantees that
any changes in the transitive fanin cone of f does not increase the switching activity of any node in the
transitive fanout cone of f (excluding f).

(15)

Proof: gives all conditions where function of node f has been changed. Note that this
change is contained within MPODCf. Therefore, it is also guaranteed that this change has resulted in a
decrease in the current switching activity of all transitive fanout nodes where this change is observable.
This is a direct consequence of the property defined for MPODCf. For power optimization, if we disallow
the function of f to change for all points within , we are guaranteed that the power reduction
obtained in the transitive fanout by changing f will be maintained. This means that MODCf is obtained by
removing the set  from part of MPODCf which makes changes in f observable at the transi-
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f
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h
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bility of f after it is optimized, is more than 0.5. This condition will disallow any increase in the
switching activity of the node beyond its current value. Since a decision is made as to only allow an
increase in the signal probability of function f, we need to only use regions Rg,f(0,-), Rg,f(1,-), Rg,f(0,0)
and Rg,f(1,1) while optimizing a node g in the fanin of f. Using theorem 1 we compute ODCg such that
regions Rg,f(0,1) and Rg,f(1,0) are empty sets and regions Rg,f(0,0) and Rg,f(1,1) are maximal. This
means that while optimizing node g, we know that any use of ODCg will only result in an increase in
the signal probability of node f and hence the function of node g can be optimized without any con-
cern about adverse effects on switching activity of node f. The same approach is used to apply theo-
rem 2 when we want to disallow an increase in the signal probability of node f (this is desirable if the
signal probability of node is less than 0.5 after it is optimized).

This discussion motivates the definition for Propagated Power Relevant Observability Don’t
Care conditions for a node f.

Definition 6 Given a node f and its fanin node g, PPODCf, the Propagated Power Relevant Observabil-
ity Don’t Care for node f is defined as a subset of the observability don’t care conditions for f that is used
to compute the observability don’t care conditions for node g while guaranteeing that any changes in the
function of g does not increase the switching activity of node f. PPODCf is defined as follows:

(13)

■

3.5   Computing Observability Don’t Cares for Power Minimization
The goal of don’t care computation approach outlined in the previous section is to allow the

optimization procedure to concentrate on local changes without concern about global effects on
power. This is equivalent to providing maximum flexibility in optimizing a node while guaranteeing
that local optimizations do not degrade total power of the network. In this section we use the analysis
presented in the previous section to propose a method for computing the set of observability don’t
care conditions that guarantee that any changes in the function of an internal node using this don’t
care set does not increase the switching activity of its immediate fanout node. We then show that
using this technique, even though it is in general possible for the switching activity of a node to
increase while nodes in its transitive fanin are being optimized, the node switching activity will never
increase beyond its value when it was optimized. In the next section we extend the technique pre-
sented here to also guarantee that changing the function of an internal node does not increase the cur-
rent switching activity of any other node in the network.

We provide the following definition for the observability don’t care set computed in this sec-
tion:

Definition 7 Given a node g and its immediate fanout node f (figure 5), PODCg, the Power Relevant
Observability Don’t Care for node g is defined as the observability don’t care conditions for g that guar-
antees any changes in the function of g does not increase the switching activity of its immediate fanout
node f.

PPODC f

f ODC f⋅ p f( ) 0.5>

f ODC f⋅ p f( ) 0.5≤⎩
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⎧

=

Figure 5: goes here.
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still possible to obtain no improvement because of increasing the signal probability of a node at one
step and decreasing it during another step of the procedure.

The complexity of power optimization procedure is reduced if a decision is made as to only
increase (or decrease) the signal probability of a function after it has been optimized. An added
advantage of this approach is that conflicting decisions will not be made regarding the new signal
probability of this node as nodes in its transitive fanin are being optimized.

The following theorems are used to reduce the complexity of the power optimization procedure.
Theorem 1 Given a node g and its fanout node f, Rg,f (0,1) and Rg,f (1,0) are the empty sets and
Rg,f(0,0) and Rg,f(1,1) are maximal if ODCg is computed as:

(11)

Proof: The following equations are derived from definition (and substituting ODCg = ODCf
g + ODCf):

 which give maximal such conditions. Now if we instead use equation 11 and use (f=g . fg + g . fg):

which shows that regions Rg,f(0,1) and Rg,f(1,0) are the empty sets and Rg,f(0,0) and Rg,f(1,1) are max-
imal. This proves the claim of this lemma.

■

Theorem 2 Given a node g and its fanout node f, Rg,f(1,1) and Rg,f(0,0) are the empty sets and Rg,f(0,1)
and Rg,f(1,0) are maximal if ODCg is computed as:

(12)

Proof: Proof is similar to proof for theorem 1.
■

Theorems 1 and 2 are used as follows. Assume that after optimizing a node f, we decide that as
other nodes in the network are optimized we want the signal probability of this node to remain the
same or only increase beyond its current value. This, for example, is desirable when the signal proba-

Figure 4: goes here.
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Proof: Proof follows immediately from the definition for don’t care regions.
■

Lemma 4 Using a minterm vi in don’t care regions Rg,f (1,1) and Rg,f (0,0) while optimizing node g will
result in bringing this minterm from the off-set to the on-set of function f.
Proof: For all minterms in region Rg,f (0,0) (Rg,f (1,1)) function g evaluates to 0(1). This means that using
a minterm in this region while optimizing function g is equivalent to including this minterm in the on-set
(off-set) of node g. Also for all minterms in this region, f and g evaluate to same(opposite) values. This
means that for all minterms in this region function f evaluates to 0. Therefore including a minterm in this
region in the on-set (off-set) of g will also include this minterm in the on-set of f.

■

Lemma 5 Using a minterm vi in don’t care regions Rg,f (0,1) and Rg,f (1,0) while optimizing node g will
result in bringing this minterm from the on-set to the off-set of function f.
Proof: Proof is similar to the previous lemma.

■

For each region in ODCg, the change in the function of f as minterm vi in region i is included in
or excluded from the on-set of g is well defined. This means that while optimizing node g, the effect
of changes in global function of node f is exactly known using the information on the don’t care
regions for node g. Therefore the effect of changing the function of g on the signal probability and
therefore the switching activity of node f can exactly be measured. In the next section we discuss how
don’t care regions are used to optimize the function of a node while considering the global effects of
this change.

3.4.3  Using Don’t Care Regions in Node Optimization
During area optimization, the local don’t care set of a node is used to optimize the local func-

tion of the node for area. During network optimization for power, the don’t care information for a
node will have to be used to minimize the combination of the power contribution of the node to the
network power as well as the switching activity in the transitive fanout nodes.

In a tree network, most nodes have more than one node in their transitive fanouts. This means
that while optimizing a node, it is necessary to consider the effect of changes in the function of this
node on all nodes in its transitive fanouts. The following lemma gives the number of don’t care
regions for a node in a tree network.
Lemma 6 For a node g in a single output tree network with k nodes in its transitive fanout, the number of
don’t care regions is given by:

(10)

Proof: Proof omitted for brevity. See [12].
■

By using don’t care regions for node g and nodes in its transitive fanout, we can analyze the
effect of changes in the function of node g on the signal probability of these fanout nodes.

There are two drawbacks in using the don’t care regions to minimize the switching activity of a
node and its transitive fanout nodes. The first drawback is that in optimizing node g, we will need
information about all don’t care regions corresponding to its transitive fanout nodes and since the
number of don’t care regions grows exponentially with the number of fanouts (lemma 6), this analysis
very quickly becomes computationally expensive. A second problem is that contradictory decisions as
to increase or decrease the signal probability of a node g can be made while optimizing nodes i1 and i2
in its transitive fanin (figure 4). This means that even if all the optimization problems are solved, it is
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Figure 2 shows how the global space of the primary inputs is partitioned with respect to global
functions of f and g. The region specified by ODCf

g specifies all points of the global space where
changes in g will not affect the global function of f. Region ∂f+/∂g specifies all points in the global
space which if included in the on-set of g will also be included in the on-set of f. This means that by
including these points in g, the number of minterms in f will also increase (hence the up arrow).
Region ∂f−/∂g specifies all the points in the global space which if included in the on-set of g will be
removed from the on-set of f. This means that including these points in g will reduce the number of
points in the onset of f (hence the down arrow).

3.4.2  Observability Don’t Care Regions
Figure 3 shows the relationship between the global functions of ∂f−/∂g, ∂f+/∂g and g. This fig-

ure is obtained by overlapping figures 1 and 2. Even though no assumption is made about the global
function of nodes f and g, figure 3 shows all possible combinations of the regions shown in figures 1
and 2 assuming a tree network.

The global don’t care conditions for node g (region above line ODCg in figure 3) is partitioned
into six regions. Each of these regions specifies a don’t care region of g with respect to f as defined in
the following.

Definition 4 Given a node g and its fanout node f, the don’t care regions of g with respect to f are
denoted as . This don’t care region specifies all global conditions where g evaluates to α
(α={0,1}). The second entry, β={0,1,-} specifies whether for points in this region f evaluates to the same
value as g (β=0), the opposite value of g (β=1) or whether f is independent of g (β=-).

For example region 3 in figure 3 is denoted as Rg,f (0,1) and region 4 is given as Rg,f (1,-).The
definition for don’t care regions is extended in the following to represent the relationship between a
node g and its transitive fanouts nodes.

Definition 5 Given a node g and its fanout nodes F={f1,...fk}, the don’t care regions of g with respect to
F are denoted as . This don’t care region specifies all global conditions where g evaluates to
α (α={0,1}). The second entry is a k bit vector where each bit takes values from the set β={0,1,-}. Bit i of
this vector specifies whether for points in this region fi evaluates to the same value as g (βi=0), an oppo-
site value than g (βi=1) or whether fi is independent of g (βi=-).

The following lemmas give properties of don’t care regions which will be used to study the
effect of changing the global function of node g on the global function of its fanout node f.
Lemma 3 Using the minterms in Rg,f (1,-) and Rg,f (0,-) while optimizing node g will not affect the glo-
bal function of node f.

Figure 2: goes here.

Figure 3: goes here.
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nal probability of other nodes in a tree network. This analysis will then be used to derive exact and
heuristic methods for computing power relevant observability don’t cares.

3.4.1 Observability Don’t Care Analysis
Assume a function f and its fanin g. Figure 1 shows the relationship between the global function

g and its maximal ODC set. The space of the primary inputs is shown by the points inside large circle.
Points inside the smaller circle represent the on-set points for function g. The single dashed region
gives all conditions where changes in function g is unobservable at node f. The combination of the
single and cross dashed regions give all the primary input combinations where changes in g is unob-
servable at the primary outputs. Note that g ∩ ODCg ≠ Ø.

The following lemmas are used to study the effect of changes in the function of node g in the
function f.
Lemma 1 ∂f+/∂g as defined here gives all global conditions where both functions f and g evaluate to the
same value.

(8)

Proof: The following relations exists between f and g where fg is the cofactor of f with respect to vari-
able g:

fg: global conditions where f =1 if g = 1
fg: global conditions where f =0 if g = 0

The intersection of these two functions gives all conditions where f changes from 0 to 1 when g
changes from 0 to 1. In other words:

{ ∂f+/∂g ⊆ Bn | ∀v ∈Bn, f(v) = g(v)}.
■

Lemma 2 ∂f--/∂g as defined here gives all global conditions where functions f and g evaluate to opposite
values.

(9)

Proof: proof is similar to the previous lemma.
■

Note that ∂f/∂g = ∂f+/∂g + ∂f−/∂g which is the difference equation and also ∂f+/∂g ∩ ∂f−/∂g = Ø.

Figure 1: goes here.
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The following equation presented in [21] is used for calculating the maximal set of CODC for the
fanins of a node g in a tree network.

(6)

Two method are also presented in [21] for computing CODCf
g. The first method generates the

maximal set of CODCf
g. A second and more efficient technique is also presented for computing a

valid subset of the maximal set of CODCf
g.

These results are then generalized to multiple fanout nodes by finding the intersection of the
compatible ODCs for each fanout edge of a node as shown in equation 7,

(7)

where CODCg(fi) gives the compatible ODC computed using equation 6 for fanout fi of node g.
This method for computing the compatible don’t care set requires that each node is optimized

only after all its fanout nodes have been optimized. The procedure for optimizing the function of
nodes in the network starts from network primary outputs. For each node in the network, it first finds
the compatible observability don’t care conditions for the node in terms of the network primary inputs
and then adds the external don’t care to this CODC. It then computes the don’t care in terms of the
immediate fanins of the function using image projection techniques. The function of the node is then
optimized using the local CODC and a subset of the SDC for nodes which with high probability may
be substituted into the node.

3.3   Observability Don’t Care Conditions for Power Minimizatoin
The compatible don’t care computed in section 3.1 is freely used while minimizing the function

of nodes in a Boolean network guaranteeing that the global function of circuit outputs will only
change within their specified external don’t care set. The change in the global function of transitive
fanouts of node n as n is optimized, is not of concern when area is being minimized since the change
in the function of each node will be within the observability don’t care calculated for that node. How-
ever as mentioned before, this observation does not hold for power minimization. For example if by
modifying the function of an internal node, the signal probability of a fanout node is changed from
0.1 to 0.2 we can expect 78% increase in the power consumption of the fanout node. The following
example demonstrates how optimizing the function of an internal node for power may result in an
increase in the total power consumption of a network.

Example 1: Consider a function f with a load of 5 and function g with load 1 where:
f = g + a ;
g = a . b;

Also: dcf = a.b,  also p(a)=p(b)=0.5
Then DCg = dcf + a = a + b
Before optimization:

f = a + a.b => p(f) = 3/4 => E(f) = 3/8=> Power(f) = 15/8
g = a.b => p(g) = 1/4 => E(f) = 3/8 => Power(g) = 3/8

After optimization, function g is set to 0:
f = a => p(f) = 2/4 => E(f) = 4/8 => Power(f) = 20/8
g = 0 => p(g) = 0 => E(f) = 0 => Power(g) = 0

This example shows that after optimizing node g, the power at the output of node f is increased.

3.4   Effect of using Observability Don’t Care conditions on Power Consumption
In this section we present an analysis on the effect of using observability don’t cares on the sig-
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node are irredundant. This means that EDC, ODC and SDC provide a complete set of don’t care dur-
ing optimization [2].

Definition 1 The external don’t care set for each output zi of the network is all input combinations that
either do not occur or the value of zi for that input combination is not important.

Definition 2 If yi is the variable at an intermediate node and fi its logic function, then yi = fi. Therefore,
we don’t care if yi ≠ fi. The expression  for all nodes in the network is called the
Satisfiability Don’t Care set (SDC).

Definition 3 The observability don’t cares (ODCs) at each intermediate node y0 of a multi-level net-
work are conditions under which y0 can be either 1 or 0 while the functions generated at each primary
output remain unchanged. If  gives the set of circuit outputs, then the complete ODC at
node y0 is:

(4)

3.2   Computing Don’t Care Conditions for Area Minimization
The complete don’t care set for a node n is found by first computing the ODC as a function of

the primary inputs of the circuit. The external don’t care which is also expressed in terms of the pri-
mary inputs is then added to ODC. Image projection techniques [6] are then used to find the ODC plus
EDC of the node in terms of the immediate fanins of the node. Finally a subset of SDC for nodes
which can be substituted into n with high probability, is added to this local don’t care. In general com-
puting the ODC for a node is the most complex part of this computation. In the following we briefly
describe this procedure.

In [7] a method is described for computing the complete set of observability conditions for each
node in the network where the ODC at each node is computed as a function of the ODC for its fanout
edges. In this procedure the ODC of the node with respect to each primary output is computed sepa-
rately. A different technique for computing the complete don’t care set is presented in [21] which
takes advantage of observability relations [4] at the primary outputs of the network. The given algo-
rithm computes the complete ODC for each node in a multi-level combinational network. For tree net-
works, the following equation is used to compute the maximal set of ODCs at the output a node g.

(5)

where .
The complete ODC cannot however be used in synthesis for any real size problem. This is

because once the function of a node is minimized using its complete ODC, the ODC at other nodes in
the network will potentially change. Therefore the ODC for each node has to be recalculated after
each optimization step. At the same time, the size of the complete ODC can become extremely large.
Therefore subsets of ODC have to be used instead of the complete ODC of each node. RESTRICT was
the first ODC filter introduced in [9]. This filter removed any cube in the ODC of a node yi which had
a literal corresponding to a node in its transitive fanout. Although this filter and a number of other fil-
ters made the ODCs smaller, ODCs still had to be recomputed after each node simplification. Com-
patible set of permissible functions (CSPF), introduced in [19] allows for simultaneous optimization
of all nodes in a network. In [21] the concept of CSPFs which is only defined for NOR gates, is
extended to complex nodes of a general multi-level network and is called Compatible ODCs
(CODCs). CODCs are used to simultaneously minimize the function of each node in the network.
Even though by using CODCs some of the information contained in each of the full ODCs is lost, the
time complexity of using the full ODC makes it impossible to use them for any practical size problem.
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2.2   Load estimation
Previous methods for power estimation have used number of fanouts for a node as an estimate

of the load at the output of a node. In this paper we use “load in the factored form” to compute the
load at the output of a node. Assume that i is the variable associated with the fanout edge of node ni in
the Boolean network. Then the factored load of node ni is the given by

(2)

where  gives the number of times variable i is used in the factored form of the function asso-
ciated with fanout node nk. Experimental results on the accuracy of load estimation techniques show
load in the factored form of nodes in the technology independent network to be an accurate measure
of load for the gates in the technology mapped network [10].

2.3   Power Model for Node Functions
 Using the definition for factored load we define the factored form power cost function for a

node. Given a node ni, the power cost of the node in the factored form is computed as:

(3)

where Internal(ni) is the set of all internal nodes in the factored form representation of ni and fi is the
function of node ni.

Note that in equation 3, load for internal nodes is assumed to be 1. This is a valid assumption
since procedures for factorizing a node [24] and their extension for power consideration [13] guaran-
tee that each internal node has only one fanout.

3    Power Relevant Don’t Cares
Logic synthesis algorithms use the flexibility provided by don’t care conditions to more effec-

tively manipulate a Boolean network. Current techniques for computing and using these don’t care
conditions allow for correct functional operation of the network by guaranteeing that as each function
in the network is being optimized using its don’t care conditions, other functions in the network are
changed only within their don’t care sets.

Power consumption in a Boolean network is proportional to the switching activity of the nodes
in the network. Switching activity of a node is a function of the signal probability of the function and
therefore dependent on the global function of the node. This means that as a node is being optimized
using its don’t care set, the switching activity of the node function as well as the switching activity of
other nodes in the network is also being changed. This clearly shows the need for new methods to
analyze the effect of using don’t care sets on the switching activity of nodes in the network. This sec-
tion provides such an analysis. The analysis presented in this section is used to propose new tech-
niques for computing and using power relevant observability don’t care sets. Power relevant
satisfiability don’t cares are the subject of section 3.9.

3.1   Don’t Care Conditions for Area Minimization
In logic synthesis, the concept of don’t cares is used to represent the available flexibility in

implementing Boolean functions. Don’t care conditions for a function specify part of the Boolean
space where the function can evaluate to one or zero. Three sources of don’t cares are external don’t
cares (EDC), observability don’t cares (ODC) and satisfiability don’t care(SDC). It has been shown
that if a node is minimized using all three types of don’t cares, then all connections to and inside the
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sion to this theory is presented that makes possible computation of Monotone Power Relevant
Observability Don’t Cares. Using this don’t care set, it is guaranteed that local node optimization do
not increase the switching activity of other nodes beyond their current value. This results in a mono-
tone decrease in the switching activity of the network as nodes are optimized (in what follows, a
monotone decrease (increase) in switching activity implies that switching activity will never increase
(decrease) but it may remain the same). The power relevant satisfiability don’t care conditions
included in the don’t care set, are intended to maximize the probability of substituting nodes with low
switching activity into the node being optimized. The approach to compute the satisfiability don’t
care [21] is modified in this paper to include low switching activity nodes (from which a subset of
nodes can be selected for possible substitution into the function of node being optimized).

The second part of the paper uses the notion of minimal variable supports to find a minimal
power implementation of the node function. Using this approach and also using the power relevant
satisfiability don’t cares described above, inputs with high switching activity may be replaced with
new fanins with lower switching activities when permitted by the power relevant don’t care conditions
derived from the network.

The rest of this paper is organized as follows. In section 2 we present switching activity, load
and power estimation models. In section 3 we present techniques for computing the set of power rele-
vant don’t cares. We then use power relevant don’t cares in section 4 to present a method for optimiz-
ing the local function of nodes for low power using the concept of minimal variable supports. Results
and conclusion are presented in sections 5 and 6.

2    Power Model

2.1   Computing Switching Activities
We use the following method to compute the switching activity for all nodes in the network for

purposes of power estimation and optimization. We use the signal probabilities at the primary inputs
to compute the signal probability for each internal node by building its global BDD. We then compute
the switching activity of the node assuming temporal independence at the primary inputs. Given the
signal probability pn for an internal node n, the switching activity for n is computed using the follow-
ing equation:

(1)

This method for estimating switching activity ignores the temporal and spatial correlations[18]
at the primary inputs of the circuit. It does however account for spatial dependence due to reconver-
gent fanout paths inside the network.

The analysis presented in the second part of this paper for optimizing the local function of
nodes does not make any assumption on how the switching activities are estimated. In fact this proce-
dure uses the switching activity values to guide the optimization process. Therefore more accurate
switching activity estimation techniques that also take into account spatiotemporal correlations can
easily be used during the node optimization process.

The analysis presented in this paper for computing power relevant don’t care conditions is car-
ried out assuming that the switching activities are estimated using equation 1. The goal here is to
compute don’t care conditions that result in minimizing switching activities estimated using this
model. Minimizing the switching activity in this case is equivalent to changing the signal probability
such that the signal probability is very close to 0 or 1 which is the same as changing the node function
such that most of the time it evaluates to either logic value zero or logic value one. This is equivalent
to attempting to “turn off” the gates in the network when permitted by their observability conditions.
In other words, using power relevant observability conditions is similar to “turning off” parts of the
logic which are not being used for computing the output function as presented in [1] and [23].

E n( ) 2 pn 1 pn–( )⋅ ⋅=
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1    Introduction
The requirement of portability for new digital applications places severe restrictions on size and

power consumption of these units. These new applications often require real time processing capabil-
ities and thus demand high throughput. At the same time, with reductions in the minimum feature size
of VLSI designs, power consumption is becoming the limiting factor in the amount of functionality
that can be placed on a single chip. Exploring the trade-off between area, performance and power dur-
ing synthesis and design is thus demanding more attention.

Low power VLSI design can be achieved at various levels of abstraction. For example, at the
system level, inactive hardware modules may be automatically turned off to save power. At the archi-
tectural level, concurrency increasing and critical path reducing transformations may be used to allow
reduction in supply voltage without degrading system throughput [5]. At the device level, threshold
voltage of MOS transistors can be reduced to match the reduced supply voltage [15].

Once these system level, architectural and technological choices are made, it is the switched
capacitance of the logic (switching activity of the logic weighted by the capacitive loading) that deter-
mines the power consumption of a circuit. Logic synthesis has proved to be an effective part of any
design cycle by effectively changing the circuit structure to optimize area and delay. New approaches
can also be used at the logic synthesis level to minimize the switched capacitance of the circuit.

During logic synthesis, the circuit is represented as a Boolean network which consists of nodes
and edges connecting these nodes. A Boolean function is associated with each node where the func-
tion is in terms of node’s immediate input edges. The main loop in logic synthesis consists of simpli-
fying the function of each node using its don’t care set derived from the network followed by
extracting sub-functions shared by nodes in the network. This means that function minimization using
a don’t care set is an important part of logic synthesis for minimum area. The problem of don’t care
computations and Boolean function minimization have been addressed by many researchers in the
past. ESPRESSO [3] presents a heuristic approach where novel techniques are used to efficiently pro-
duce good area solutions while ESPRESSO EXACT [20] presents an exact method for solving the
minimum area solution. In [7] a method is presented for computing the complete set of observability
conditions for each node in the network where the observability don’t care (ODC) at each node is
computed as a function of the ODC for its fanout edges.

The problem of power optimization during logic synthesis has been addressed in a number of
recent publications. The don’t care set computed for area optimization [21] is used in [22] to optimize
the local function of nodes for power. This work does not however take into account the effect of
changes in the function of internal nodes on the power consumption of other nodes in the network.
The idea of power relevant don’t cares was first introduced in [11] where an efficient technique for
computing power relevant don’t cares was presented. The computed power relevant don’t care guaran-
tees that any changes in the local function of a node does not result in increasing the switching activ-
ity of other nodes in the network beyond their value when these nodes were optimized. The notion of
minimal variable supports is used in [11] to optimize the local function of nodes for power.

The analysis on power relevant don’t cares [11] is used in [14] to compute a re-synthesis poten-
tial for nodes in a technology mapped network. This re-synthesis potential represents the estimated
effect of a change in the local function of a node on the power consumption of its transitive fanout
nodes. The method presented in [14] also takes into account changes in power consumption due to
variations in hazardous transitions in the network after an internal node is re-synthesized. Under a
simplifying assumption (that is, assuming a signal probability of 0.5 for all primary inputs) an effi-
cient technique is presented for computing this re-synthesis potential.

This first part of this paper presents a method for computing the power relevant observability
and satisfiability don’t cares for nodes in a Boolean network. The power relevant observability don’t
care presented here consists of the power relevant don’t cares presented in [11]. In addition, an exten-
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Abstract

This paper shows that using don’t cares computed for area optimization during local node min-

imization may result in an increase in the power consumption of other nodes in a Boolean network. It

then presents techniques for computing a subset of observability and satisfiability don’t care condi-

tions that can be freely used to optimize the local function of nodes. The concept of minimal variable

support is then used to optimize the local function of each node for minimum power using its power

relevant don’t care set, that is, to re-implement the local function using a modified support that has a

lower switching activity. Empirical results on a set of benchmark circuits are presented and dis-

cussed.
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