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ABSTRACT

Due to the significant contribution of interconnect to the area and speed of today’s circuits

and the technological trend toward smaller and faster gates which will make the effects of

interconnect even more substantial, interconnect optimization must be performed during

all phases of the design. The premise of this paper is that by increasing the interaction

between logic synthesis and physical design, circuits with smaller area and interconnection

length, and improved performance and routability can be obtained compared to when the

two processes are done separately. In particular, this paper describes an integrated approach

to technology mapping and physical design which finds solutions in both domains of design

representation simultaneously and interactively. The two processes are performed in lock-

step: technology mapping takes advantage of detailed information about the interconnect

delays and the layout cost of various optimization alternatives; placement itself is guided by

the evolving logic structure and accurate path-based delay traces. Using these techniques,

circuits with smaller area and higher performance have been synthesized.

Key Words: Technology mapping, Logic decomposition, Placement, Layout-driven logic

synthesis.



1 INTRODUCTION

A principal goal of the electronic design automation effort is to provide designers with the capability

to employ a complete top-down design methodology, compiling abstract architectural descriptions

into an optimal implementation for a specific physical media. In fact, as density increases, system

and ASIC designers have no choice but to converge to such a top-down design methodology.

However, there is at least one major difficulty that must be overcome in order to develop the full

potential and promise of this methodology. The problem is that the top-down design approach makes

high-level decisions about optimization, scheduling, allocation, logic partitioning and restructuring,

and so forth in terms of abstract views of behavior and structure. During these early steps, factors

such as characteristics of the physical media, layout, interconnect and parasitics are ignored.

Physical design which is expected to address these issues, comes much later in the design hierarchy.

By then, many of the key architectural and structural decisions have been made, hence, limiting

the capability of the physical design tools to generate the “best” solutions in terms of area and

performance. In addition, once some parameter at the physical design stage fails to satisfy a

constraint imposed on it, the synthesis must be modified (even repeated) so as to accommodate the

constraint. The new change may cause some other constraint to be violated and the process must

be iterated.

It is, therefore, necessary to develop models, algorithms and techniques to increase the power

and robustness of the top-down design methodologies. The goal – which is easy to state but

difficult to achieve – is to integrate the various design steps keeping the computational complexity

manageable. This paper is a step toward achieving this objective, that is, it describes novel

techniques to couple logic synthesis to physical design and to explicitly control the interconnection

length during logic synthesis. This will allow physical design and logic synthesis to evolve together

and will ensure higher degrees of system level integration.

The goal of logic synthesis is to produce a circuit which satisfies a set of logic equations,

occupies minimal silicon area and meets the timing constraints. Logic synthesis is often divided into

a technology-independent and a technology-dependent phase. In the first phase, transformations

are applied on a Boolean network to find a representation with the least number of literals in

the factored form. Additional timing optimization transformations are applied on this minimal

1This work was sponsored in part by the National Science Foundation and by the Semiconductor Research

Corporation.
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area network to improve the circuit performance. The role of the technology-dependent phase is

to finish the synthesis of the circuit by performing the final gate selection from a target library.

The technology-dependent phase is, to a large extent, constrained by the structure of the optimized

Boolean network. Most previous work in logic synthesis [4, 3] has focused on minimizing gate area

and delay through a chain of gates without considering the area needed to hold the interconnect

lines or the delay through the lines. It is generally assumed that interconnect optimization can

be relegated to the physical design phase. Only recently some attention has been given to the

interconnect optimization during logic synthesis [1, 20, 19].

1.1 Interconnect Effects

Interconnections are becoming a major concern in today’s high-performance, high-density ASIC

designs because the distributed RC time delay of these lines increases rapidly as chip sizes grow

and minimum feature sizes shrink [2]. With recent studies [23, 10] indicating that interconnections

occupy more than half the total chip area and account for a significant part of the chip delay, it

is appropriate that wiring is integrated into the cost function for logic synthesis. To elaborate on

this point, consider Figure 1 which shows a performance-optimized two-input NAND gate driving

a performance-optimized inverter gate through 0.2 cm of aluminum interconnect (2 �m wide, 0.5

�m thick, with a 1.0 �m thick field oxide beneath it). 0.2 cm is the expected length of a local

interconnect line on a 2cm � 2cm chip [2]. Two methods are used to calculate the rise time (to

50% of its final value) at the input of the inverter gate: one method ignores the capacitance and

resistance of the interconnect line, the second method accounts for them [22]. Gate delays are taken

from data sheets for an industrial 1-micron ASIC library; interconnect capacitance and resistance

are calculated using expressions given in [2]. The delay calculations clearly show that interconnect

capacitance dominates gate input capacitance and interconnect resistance may be ignored without

introducing much error. When the RC tree forms branches, delays for the branching nodes can be

calculated independently and accumulated to obtain the delays at the sink nodes. This calculation,

however, requires knowledge of net topologies which is not available before global routing. This

effect will not be addressed here. Furthermore, the transmission line properties of interconnect

lines are ignored for on-chip connections. Therefore, an accurate expression for propagation delay

through gates connected by local interconnect lines is given by

d�z� � � �Rs�Cz � Cl�
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where � is the intrinsic gate delay, Rs is the on-resistance of the driver gate, Cz is the input

capacitance of the fanout gate, C is the interconnect capacitance per unit length and l is the

interconnect length.

Figure 1 goes here.

In summary, with the existing technology, the capacitive term is dominated by the capaci-

tance between the interconnection and substrate. For local aluminum lines, the resistive term is

dominated by the on-resistance of the MOS transistor; for polysilicon and global aluminum lines

on large-size circuits, the resistive term is controlled by the interconnection resistance. As the

chip dimension increases and the minimum feature size decreases, the interconnection resistance

increases rapidly while the MOS on-resistance remains relatively unchanged; the interconnection

capacitance bottoms at about 1 - 2 pF�cm while the input gate capacitance decreases. Therefore,

the distributed RC delay of interconnect lines will become even more dominant in the future.

1.2 Concepts and Examples

A Boolean network N , is a directed acyclic graph (DAG) such that for each node in N there is

an associated representation of a Boolean function fi, and a Boolean variable yi, where yi � fi.

There is a directed edge �i� j� from yi to yj if fj depends explicitly on yi or y�i. A node yi is a fanin

of a node yj if there is a directed edge �i� j� and a fanout if there is a directed edge �j� i�. A node

yi is a transitive fanin of a node yj if there is a directed path from yi to yj and a transitive fanout

if there is a directed path from yj to yi. Primary inputs are inputs of the Boolean network and

primary outputs are its outputs. Intermediate nodes of the Boolean network have at least one fanin

and one fanout. A Boolean network is an implementation or representation of a set of incompletely

specified Boolean functions.

Figure 2 goes here.
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Given a Boolean network optimized by technology-independent logic operations and a target

library, technology mapping is the process of binding nodes in the network to gates in the library

such that the area of the final implementation is minimized, and timing constraints are satisfied.

We illustrate the incorporation of the interconnect into technology mapping with a simple example.

Figure 2a shows a small portion of a NAND-decomposed Boolean network. Source nodes si have

either been mapped (and hence have been assigned matching gates and positions) or are fixed at

the circuit boundary. Note that s1 and s2 are positioned near one another but far from s3 and s4.

The objective is to transfer the signals from si’s to the sink node t implementing the desired logic

function while using minimum wire length. Conventional technology mappers attempt to find a

solution with the smallest area gate which matches as many intermediate nodes as possible (the

solution with one AND4 gate in Figure 2a). This is a good approach if the fanin gates si can be

placed near the matching gates. However, in many cases, these gates are either strongly connected

to different gate clusters on the layout plane or are fixed at the circuit boundary and hence may

have positions far from one another and from the matching gate. Therefore, a solution with one

distribution point may incur a large interconnection cost. In fact, there is often an optimum number

of mapped gates greater than one which will result in overall minimum wire cost as depicted in

Figure 2. If the number of sources is large, say four or more, then it will pay off to consider how

close the sources can be placed by a good placement optimizer before deciding whether a solution

of one gate (with high fanin count) or a solution of more than one gate (with low fanin counts)

should be chosen. The technology mapper proposed here selects the solution with one AND2 and

one AND3 gate in Figure 2a.

Figure 2b illustrates the importance of a layout-directed technology decomposition for the

technology mapping scheme. This figure shows the same decomposition tree as in Figure 2a.

However, this time as a result of placing the NAND-decomposed network, source nodes s1 and s3

(s2 and s4) have been positioned near one another. Signals coming from s1 and s3 (s2 and s4) enter

the network at topologically distant points. This is undesirable because the mapper has lost the

option of reducing the wiring cost by breaking one big gate into smaller gates, i.e., in Figure 2b,

the mapping solution with one AND4 gate is superior to other solutions in terms of both total gate

area and interconnection length. Therefore, Figure 2a provides better technology decomposition
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(and hence potential for higher quality mapping) than that in Figure 2b.

1.3 Overview

In this paper, we present LDTM [20], a technology mapping program, built on top of MIS [4],

which tightly and interactively couples mapping to placement. LDTM’s key idea is to generate

a placement of the optimized multi-level Boolean network which captures the structure of the

network. The placement information is used to evaluate the cost of a gate matching during

decomposition and mapping processes. The placement is dynamically updated in order to maintain

the correspondence between logic and layout representations. In the end, a mapped network along

with a companion placement solution are generated. The placement solution is then globally relaxed

in order to produce a feasible placement according to the target layout style (e.g., standard-cell or

sea-of-gates). This design flow is in contrast with the existing synthesis systems which separate

technology mapping and placement steps.

Technology Mapping is driven by layout information derived from the placement of the Boolean

network. It is, therefore, essential to generate a placement solution which not only captures the

global connectivity structure of the network, but also produces the shortest directed path between

any pair of primary input – primary output nodes. [16] describes a flow-oriented approach to the

placement of general directed acyclic graphs.

In Section 2, the technology mapping paradigm is presented. Section 3 describes a technique

for creating a feasible placement solution from the companion placement solution. Sections 4 and 5

contain experimental results, discussions and future research directions.

2 LAYOUT-DRIVEN TECHNOLOGY MAPPING

A successful and efficient solution to the technology mapping problem was suggested by K. Keutzer

and implemented in DAGON [12] and MIS [9]. The idea is to reduce technology mapping to DAG

covering and to approximate DAG covering by a sequence of tree coverings which can be performed

optimally using dynamic programming. DAGON and MIS technology mappers generate circuits

with small active cell area but ignore area contributed by interconnections between gates. Conse-

quently, these mappers produce gates with high fanin count which often increase routing congestion

during the final layout and increase interconnection lengths. Similarly, performance-oriented tech-
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nology mapping programs suffer from lack of detailed information about the interconnect delay.

The approach presented here, however, explicitly considers interconnect and routing complexity

during the mapping.

Our layout-directed technology mapping is based on the DAG covering formulation which

can be summarized as follows. A set of complete base functions is chosen, such as a two-input

NAND gate and an inverter. The optimized logic equations (obtained from technology independent

optimization) are converted into a graph where every node is one of the base functions. This graph

is called the subject graph. Each library gate is also represented by a graph consisting of only

base functions. Each such graph is called a pattern graph. A library gate may have many different

pattern graphs. The technology mapping problem is then defined as the problem of finding a

minimum cost covering of the subject graph by choosing from the collection of pattern graphs for

all gates in the library. For area optimization, the cost of a cover is defined as the sum of gate

areas. For performance optimization, the cost of a cover is defined as the critical path delay of the

resulting circuit. In particular, the mapper binds a given logic circuit onto a set of gates in the target

library minimizing post–layout area, delay or area under delay constraints.

2.1 Technology Decomposition

The procedure for converting an optimized Boolean network into the subject graph (i.e., technology

decomposition) is not unique, and it is an open problem to determine which of the possible subject

graphs yields an optimum solution when an optimum covering algorithm is applied [5]. The

goal of our technology decomposition procedure is to find a circuit representation with minimum

signal arrival time at the primary outputs and minimum number of wire crossings (given an initial

placement of the optimized Boolean network).

The decomposition process starts by constructing AND-OR trees implementing the sum-of-

product representation of the logic function associated with each intermediate node in the Boolean

network. The function of AND subtrees is to compute the product terms (cubes) and that of the

OR subtrees is to compute the sum of the product terms. The input signals to the AND subtrees

and then the cubes in the OR subtrees are ordered. The conversion from the ordered AND-OR

subtrees to the gates in base function set is accomplished using unbalanced NAND decomposition

by providing late arriving inputs with shorter paths through the NAND-decomposed subnetwork
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[25, 17].

Figure 3 goes here.

In order to derive the input signal ordering, one refers to the companion placement solution

for the Boolean network. Each multi-pin net signal is modeled by a star connection from the

source toward the sinks. By circularly traversing around each node (for example, starting from the

positive horizontal axis and proceeding in a counter-clockwise fashion), a unique ordering of the

input signals to the node can be determined. This ordering is directly related to the positions of the

fanin nodes with respect to the node in question.

The cube ordering is achieved by setting up a linear assignment problem. S slots are placed on

an imaginary inner circle around the node, and the projections of the fanin signals into an imaginary

outer circle around the node are found (Figure 3). Then, a linear assignment cost matrix C is set up

whose cik entry corresponds to the cost of assigning cube i to slot k. This entry is equal to zero if

slot k falls inside the shortest circular span for the immediate support of cube i. Otherwise, the cost

is proportional to the angular distance of slot k from the nearest end of the support span of cube i.

The linear assignment program [7] determines a cube assignment with the minimum sum-cost. The

cube ordering is easily derived from the cube positions obtained by the above linear assignment

procedure. The process of ordering input signals, cubes and then primitive gate decomposition is

recursively applied to all nodes in the Boolean network in order to produce the subject graph.

2.2 DAG Covering for Minimum Layout Area

Consider a Boolean network N , which has been transformed into a subject graph consisting of

only two-input NAND and inverter gates. This is the network in its unmapped form which will

be referred to as the inchoate network, Ninchoate. In DAGON, Ninchoate is partitioned into a set of

maximal trees, Ti, and an optimal dynamic programming solution is found for each tree. In MIS,

Ninchoate is split into a set of logic cones Ki, where each cone corresponds to a primary output

and all its transitive fanin nodes. This allows covering across tree boundaries and, as a result, may

duplicate logic. The MIS technology mapper implements DAGON as a subset. Our mapper uses
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cone partitioning.

Figure 4 goes here.

Assume that the cost of match m at node v is to be calculated (Figure 4). This cost consists of

two (linearly combined) terms:

area cost�v�m� � area�gate�m�� �
X

vi�inputs�v�m�

area cost�vi�mi�

wire cost�v�m� � wire�gate�m�� gate�vi�� �
X

vi�inputs�v�m�

wire cost�vi�mi��

where inputs�v�m� refers to the list of nodes of N which correspond to the inputs of m. gate�m�

is the physical gate corresponding to m. gate�vi� is the best gate matching at node vi. The area

cost calculation is similar to that in MIS. The wire cost wire cost�v�m� consists of two terms. The

first term is the interconnection length required to complete connections from gate�m� to its fanin

gates, i.e., gate�vi�. The second term is the dynamic programming recursive cost and represents

the sum of wire lengths required to connect all gates from primary inputs up to gate�vi�. In order

to calculate wire cost�v�m�, the position of m must be known as shown next.

At the beginning, nodes are assigned valid placePositions based on the initial global placement

solution. As nodes are mapped, mapPositions are calculated and stored on nodes. In particular,

match m is placed at the center of mass (or median) of its fanin and fanout rectangles. Due to

the postorder traversal of the network during the mapping procedure, inputs�v�m� have already

been mapped and therefore their mapPositions are used; outputs�v� are not mapped yet and their

placePositions are used.

Figure 5 goes here.

Depending on the wire length metric adopted, the local placement problem can be solved

efficiently or can become difficult. Consider Figure 5, which shows the enclosing rectangles for
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the fanin and fanout nets of match m at v.1 Given a norm and the coordinates of these fanin and

fanout rectangles r, the problem is to find a point p which results in the minimum sum of distances

between that point and the rectangles. In case of the Manhattan norm, the solution easily follows by

observing that the distance function has a separable form with respect to the variables x and y. That

is, the x distance of point p from rectangle r is 1
2�jr�ll�x� p�xj� jr�ur�x� p�xj � jr�ur�x� r�ll�xj�

where ll and ur refer to the lower left and the upper right of rectangle r. The constant term is

dropped and the problem can be restated as: Find x such that
P

i jxi � xj is minimum where xi

corresponds to either the left or the right corner point coordinates of each of the rectangles. The

problem is a special case of solving for the median of a graph which is presented in [11]. It can

be shown that this problem, treating only a linear tree rather than a general graph, is very easy

to solve; the solution is the median point for the sorted list of xi’s. For the Euclidean norm, the

optimal point location problem can be solved approximately by placing m at the center of mass of

its fanin and fanout rectangles [18].

When constructing the enclosing rectangle of fanin net i, it is important to know fanout nodes

of source node vi. These fanout nodes of vi are dynamically defined based on the current partially

mapped network. First, we give some definitions. A sink node in a pattern graph is defined as a

node which does not fanout to any other node in the pattern graph. In Figure 4, assume that cone

K1 has been mapped. At this point, nodes can be classified into four categories. An egg is a node

which has not been processed (visited) by the mapper. A nestling is a node in the current cone, K2,

which has been visited. It cannot be predicted whether a nestling will be present in the final mapped

network until primary output PO2 is reached. A dove is a node in K1 which is a non-sink element

of some pattern match. Such a node will not be present in the final mapped network because it has

been merged into another. A hawk is a node in K1 which is a sink node in some pattern match.

Such a node will inevitably show up in the final mapped network. Note that every dove has been

merged into (fallen prey to) at least one hawk. A nestling can become a hawk or a dove. Due to the

possibility of logic duplication, it may be possible for a dove to reincarnate and restart the node’s

life cycle as an egg and later become a hawk. The dynamic fanout of fanin vi for match m at v is

a hawk, a nestling or an egg which has vi as its fanin. For example, the list of dynamic fanouts of

node v4 consists of nodes v, x2 and f4. During the construction of the enclosing rectangle of net i

(say 4), nodes covered by the current match are excluded from the net. In addition, mapPositions

1The enclosing rectangle for a fanin (fanout) net is the smallest rectangle enclosing the gates connected by the net.
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are used for hawks and nestlings (x2 and v4) and placePositions are used for eggs (f4).

After positioning gate�m�, the wire cost associated with the matching of m at node v must be

calculated. This cost consists of the sum of the wire lengths from m to its fanins. Consider fanin vi

of m. If it is driving only the input pin of m, the wire length calculation is point-to-point. However,

if it is driving multiple fanout pins (including input pin of m), then the half perimeter length of

the minimum box bounding all pins on the net is used. Note that during technology mapping for

minimum area, only length of the line connecting each fanin vi to m is of interest. Therefore, the

net length must be divided by the dynamic fanout count at vi in order to get the expected wire

length contributed by connection from vi to m and thereby avoid duplicate accounting of the wire

cost.

2.3 DAG Covering for Minimum Circuit Delay

In the delay mode, the best mapping at a node is determined based on the arrival time of the

signal at the node output. As pointed out earlier, it is the delay in the interconnect that is of prime

importance. Hence, it is only natural that wiring delay is incorporated into the calculation of the

arrival time during technology mapping.

Consider a gate g with output line y and input lines i, i � 1 � � � p. Let g fanout to inputs of gj . In

a simple linear delay model, the delay through g is a linear function of its output load capacitance

CL. The slope of this linearity can be thought of as the output resistance and the offset (at zero

CL) can be thought of as the intrinsic delay through g. In general, the delays from different inputs

to the output are different. Therefore, the intrinsic delay from input i to y is denoted by Ii, and

the output resistance at y corresponding to input i is denoted by Ri. Ii and Ri each have separate

values for rising and falling delays.

Based on this general model, the arrival time at y from input i, tyi , can be easily calculated

as tyi � ti � Ii � Ri CL where ti is the arrival time at input line i. Using a worst case analysis,

the output arrival time at y, ty is defined as the time at which all signals from input lines i will

be available at y and is given by ty � maxftyig computed over all i� i � 1 � � � p. This calculation

for the arrival time requires that the value of CL be known. CL is the equivalent capacitive load

at y. This capacitance is modeled as CL �
Pn

j�1 Cj � Cw where Cj denotes the capacitance at

the input of fanout gate gj , and n is the number of fanout nodes. Cw represents the capacitance

due to the interconnections which connect g to its fanout nodes. We calculate Cw accurately using
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the placement information which provide the horizontal and vertical extents of the signal nets and

using a technology file which provides the capacitance per unit length of horizontal and vertical

interconnect.

In Figure 4, fanouts of v are not yet mapped. This implies that the load CL, at the output of

gate(m) cannot be determined exactly. This difficulty can be handled by assuming a default load,

i.e., all types of gates are assumed to have the same input capacitance. This assumption is also

adopted in MIS2.1. However, in order to calculate the wiring capacitance, positions of gates at the

fanouts of v must be known. This information is not available and instead positions of the fanout

gates are read from the initial placement solution of the subject graph. The simplification gives

rise to inaccuracies in the arrival time calculation. To prevent the inaccuracy from propagating

through, the following observation is used: When matching m at v, the capacitance at the output

of inputs(v,m) is known because the type and position of their fanout gate, which is gate(m), is

known. If the output arrival times of inputs(v,m) are updated, then the input arrival time of gate(m)

is accurate. Therefore, the output arrival time for gate�m� can be calculated with less error (that

is, error will be due to the unknown load only).

3 PLACEMENT RELAXATION

After the logic synthesis stage, a net list of gates and a companion placement solution are available.

The placement solution, however, has overlapping gates and has not yet been mapped to rows (in

the case of the standard cell layout methodology) or to slots (in the case of the sea-of-gates style).

The objective of global relaxation step is to eliminate gate overlaps and produce an even distribution

of gates over the layout image. Two basic approaches are generally used for mapping a global

placement result to legal locations: (1) Perform a minimum squared error linear assignment which

maps the cells in the global placement to the legal positions simultaneously; (2) Use a hierarchical

bi-partitioning technique to obtain a feasible placement solution.

In our application, the initial (globally optimized) placement is modified throughout the syn-

thesis (based on local considerations only), and therefore, the resulting companion placement is

not globally optimized. However, we do not want to throw away the companion placement (which

has influenced many of our decisions during the synthesis) and place the mapped network from

scratch.

We have adopted the top-down bi-partitioning heuristic in the following way. Our placement
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procedure consists of alternating and interacting global function optimization and partitioning steps.

In particular, for a circuit with M gates, the placement procedure goes through m � dlog2Me

steps in order to produce a detailed placement. Now, assume that an initial placement solution

for the circuit and two parameters Ns and Nf are given. These parameters specify the start

and finish conditions for the relaxation procedure, that is, relaxation begins when number of

modules per hierarchical region is Ns and ends when this number is Nf . Let s � dlog2Nse,

t � dlog2Nfe, then m � s � t � 0. We modify the placement procedure so that it goes through

steps m� s� � � � �m� t only, thereby, achieving the relaxation goal without drastically disturbing

the initial placement solution. Note that Ns � M corresponds to doing placement from scratch

while Nf � 1 corresponds to the detailed placement (one module per region). We have obtained

the best results when setting Ns � M�8 and Nf � 1.

4 EXPERIMENTAL RESULTS

Our objective was to show that by integrating technology mapping and gate placement, one can

improve the quality of mapping both in terms of layout area and circuit performance. In order to

provide a fair basis for comparison, two pipelines were used to produce the results: 1) Read in

the optimized circuit; do balanced tree technology decomposition; read in the lib2.genlib standard

cell library; run MIS technology mapper in timing mode; write the mapped circuit to the database;

do detailed placement and routing. 2) Read in the optimized circuit; do layout driven technology

decomposition; read in the lib2.genlib standard cell library; run LDTM in timing mode; do detailed

placement and routing. The following tools were used for generating the layouts: the GORDIAN

package for placement [14], the TIMBERWOLF global router [15], and the YACR detailed router

[21].

Table 1 goes here.

In both cases, the technology-independent optimizations were performed using the MIS pro-

gram. The benchmarks were optimized for minimum area using the rugged script [24]. This script
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produces the optimized circuits. The literal count results (before technology mapping) are listed in

Table 1.

Table 2 goes here.

Table 2 shows post-mapping comparisons between the MIS and LDTM in terms of total gate

area and logic delay calculated by ignoring the wiring loads (i.e., using the input capacitances, the

intrinsic and fanout delays for logic gates only), and the cpu times on a Sparc Station II workstation.

The MIS mapper produces somewhat better results in terms of logic delay and is faster by a factor

of 1.8.

Table 3 goes here.

Table 3 shows post-placement comparisons between the MIS and LDTM in terms of total chip

area and circuit delay calculated after placement and routing and accounting for the the wiring

loads. As expected, LDTM shows an average chip area improvement of 7% and a total delay

improvement of 9% compared to MIS. This improvement is mainly due to reduced wiring load on

critical signal paths as a result of LDTM’s gate selection policy. We used a value of 3 pF�cm for

the capacitance per unit length. As the technology scales down and the contribution of the wiring

delay to total circuit delay increases, the percentage improvement of a layout-driven mapper (such

as LDTM) over a conventional mapper (such as that of MIS) will increase.

These tables were generated by running the MIS and LDTM mappers in the timing mode. A

similar trend existed when we ran these mappers in the area mode.

5 CONCLUDING REMARKS

In this paper, we put forth techniques for coupling logic synthesis and placement. To achieve

this objective, we studied the effects of interconnect on circuit area and performance, presented
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appropriate models and computational procedures for estimating wiring delay during synthesis,

and introduced a scheme for maintaining simultaneous and interactive data representations in logic

and layout domains.

Layout information should be considered during all logic synthesis operations in order to

improve the circuit routability and reduce the interconnect contribution to circuit area and delay.

This is important since, as discussed earlier, interconnects play a primary role in determining the

longest paths through a circuit. Therefore, layout-driven algorithms and techniques for performing

the various logic operations must be developed.

In manipulating the initial representation of the logic function, five operations are key: decom-

position, extraction, factoring, substitution, and collapsing [5]. We are developing layout-integrated

procedures for these logic operation which aim at minimizing the total interconnection length of the

synthesized network as well as the total number of literals in the factored form representation of the

network. For example, consider the extraction procedure which identifies common subexpressions

among various functions. The literal value of a kernel measures the difference in the number of

literals in the network if that rectangle is extracted and made into a new node [6, 4]. We can

similarly define the interconnection value of a kernel as the difference in the total wire length in

the network if that kernel is extracted and made into a new node. We then use a kernel-selection

policy which chooses a kernel with the greatest cost reduction in terms of a linear combination of

literal and interconnection values [19].

Performance optimization logic restructuring operations (e.g., depth reduction [13], partial

collapse and resynthesis along the critical paths [25], logic clustering and partial collapse [26], etc)

are often used to speed the synthesized network. Layout information can be exploited by most

of these transformations. For example, consider circuit speed-up procedure given in [25]. This

procedure identifies an �-network (i.e., a sub-network in which all the signals have a slack within

� of the most negative slack), partially collapses the nodes in the �-network, and redecomposes

these nodes using a timing-driven decomposition scheme such that the resulting network is faster,

and the area increase is minimal. During this process, if information about the interconnect delay

becomes available (through a placement of the original network and incremental calculation of

positions for the collapsed and later newly created nodes), then the following improvements are

possible: the timing analysis for finding the �-critical paths is performed more accurately; during

decomposition both literal saving and interconnect saving values of the candidate divisors are

considered; interconnect delays influence the selection of the best timing-divisors; and NAND-
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decomposition of collapsed nodes can be performed using information about positions of fanin

nodes.

The layout-driven technology mapping procedure can be easily extended to solve the problem

of minimizing gate area plus wiring subject to required time constraints on the primary outputs. The

idea is to incorporate the wiring area and delay into the initial calculation of area-delay trade-off

curves and the subsequent gate selection steps [8].

Previous approaches for Table Look-Up (TLU) based FPGA’s have aimed at minimizing the

number of TLU’s. However, routing resources in these architectures are very limited and therefore

mapping for improved routability is an important consideration. The layout-driven approach can

be extended to the FPGA synthesis problem.
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Ex. original optimized

9symml 277 183

C1355 1032 552

C1908 1497 535

C3540 2934 1283

C432 372 219

C5315 4369 1763

C880 703 414

apex6 904 732

apex7 289 243

b9 236 124

duke2 763 452

f51m 169 80

rot 764 664

z4ml 77 43

Table 1: Multi-level benchmarks: number of literals in factored form
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MIS LDTM

example gate area logic delay cpu time gate area logic delay cpu time

mm2 ns s mm2 ns s

9symml 0.288 16.19 9.4 0.280 16.23 15.2

C1355 0.612 23.77 36.1 0.664 23.94 48.4

C1908 0.830 32.32 59.3 0.811 33.01 74.5

C3540 1.810 46.92 92.7 1.933 47.19 192.3

C432 0.374 28.09 24.9 0.400 27.56 38.5

C5315 2.300 37.10 75.6 2.305 40.35 181.5

C880 0.637 32.85 33.4 0.640 33.10 51.8

apex6 1.005 15.28 25.7 1.012 15.06 56.9

apex7 0.342 14.20 10.9 0.344 14.31 27.1

b9 0.187 5.84 5.2 0.189 6.25 8.8

duke2 0.655 16.28 30.3 0.670 17.63 51.5

f51m 0.120 22.15 3.9 0.116 22.37 5.7

rot 0.918 20.73 26.7 0.919 21.98 59.5

z4ml 0.080 10.11 3.1 0.087 10.21 4.5

Table 2: Comparison of the total gate area and logic delay after placement and routing. The cpu

time reflects the mapping time.
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MIS LDTM

example chip area total delay cpu time chip area total delay cpu time

mm2 ns s mm2 ns s

9symml 0.860 22.66 32.9 0.841 21.15 40.1

C1355 2.371 36.16 131.2 1.883 31.21 154.4

C1908 3.233 47.73 150.9 2.764 43.77 161.1

C3540 8.224 70.26 296.4 8.106 65.01 420.8

C432 1.197 37.46 67.2 1.101 34.84 82.1

C5315 10.754 60.85 776.1 9.522 55.66 861.0

C880 1.961 45.50 126.1 1.772 41.93 144.2

apex6 3.887 27.43 375.0 3.794 25.19 397.6

apex7 0.935 18.96 73.9 0.906 15.70 84.5

b9 0.491 8.03 42.1 0.486 7.52 45.8

duke2 2.604 25.25 100.9 2.556 23.19 120.1

f51m 0.303 29.34 17.1 0.267 27.67 18.6

rot 3.268 30.88 387.2 3.007 27.82 418.3

z4ml 0.179 12.72 13.0 0.170 11.90 14.6

Table 3: Comparison of the final chip area and circuit delay after placement and routing. The cpu

time reflects the mapping, placement and routing times.
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