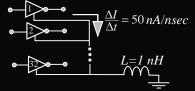
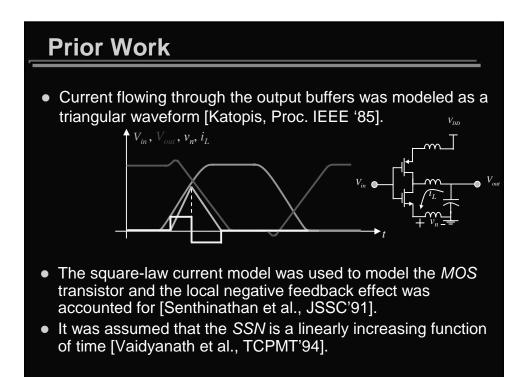
Analysis and Optimization of Power/Ground Bounce in Digital CMOS Circuits

Payam Heydari and Massoud Pedram Department of Electrical Engineering-Systems University of Southern California

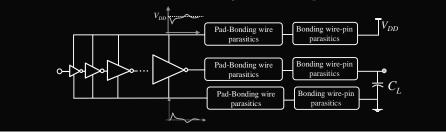

ICCD 2000, Austin, Texas, Sept. 17-20

Outline

- Introduction
- Prior Work
- Packaging Technology and Interconnect Levels
- Model of the Chip-package Interface
- Ground Bounce
- Tapered Buffer Design in the Presence of Ground Bounce
- On-chip Decoupling Capacitance
- Skew Control


Introduction

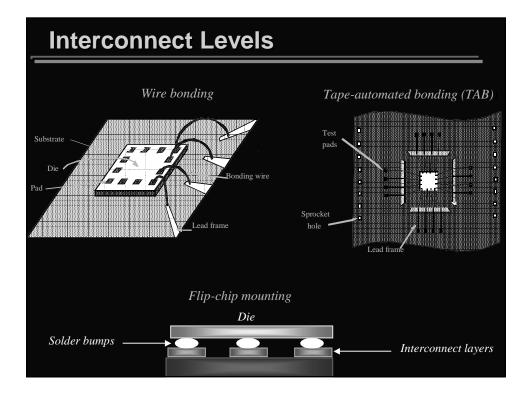
- Signal integrity is a crucial problem in VLSI circuits.
- Package pins, bonding wires, and interconnects cannot be treated as short circuits any more.
- Power/ground bounce limits the performance of high-speed VLSI circuits.
- The noise effects become worse as the clock speed and the number of devices and I/O drivers increase.

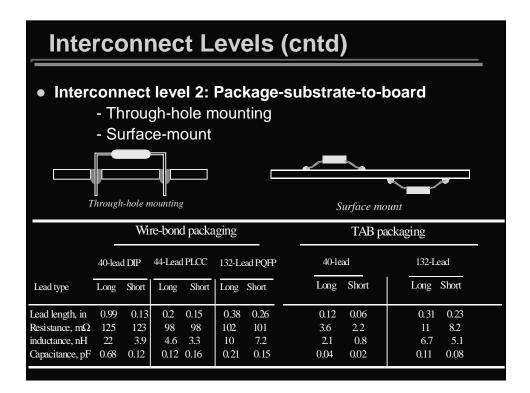

 $NL\frac{\Delta I}{\Delta t} = 1.6 V$

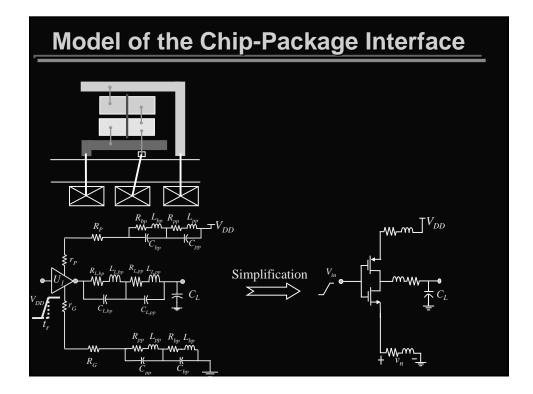
- Existing models are based on arbitrary assumptions about the form of the current or the ground bounce waveforms.
- Need an accurate and efficient analysis technique for modeling the simultaneous switching noise (SSN).

Prior Work (cntd)

- A methodology was described to analyze the power supply noise [H. H. Chen et al., TCPMT'98]. A power supply distribution model was presented based on:
 - a package level network dominated by inductance,
 - an on-chip power bus network dominated by resistance,
 - an equivalent circuit to represent the switching devices.
 - Triangular or trapezoidal current waveforms for currents.
- The simultaneous switching noise will affect the total delay and transition time of the output buffers [Vemuru, TVLSI'97].




Packaging Technology


- Up to 50% of the delay of a high performance computer is due to packaging delay. This number is expected to rise.
- A good package must comply with a set of requirements:
 - 1. Electrical requirements
 - Low R, C, L parasitics for pins.
 - 2. Mechanical and thermal properties
 - High heat-removal rate
 - Good matching between the thermal properties of the die and the chip carrier
 - Strong connection from die to package and from package to board
 - 3. Cost
 - Cost-performance trade-off
 - Packing density
 - Increasing demand for higher I/O count

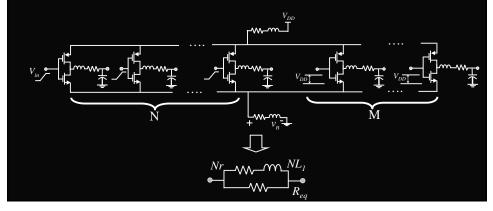
Interconnect Levels

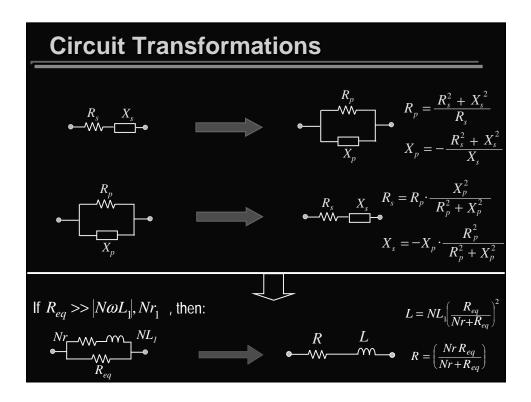
- Conventional packaging approach uses a two level interconnection technology.
- Complex systems may contain even more levels.
- The trend is toward reducing the number of levels Solution: Multi-chip modules (MCM)
- Interconnect level 1: Die-to-package-substrate
 - Wire bonding
 - Tape-automated bonding (TAB)
 - Flip-chip

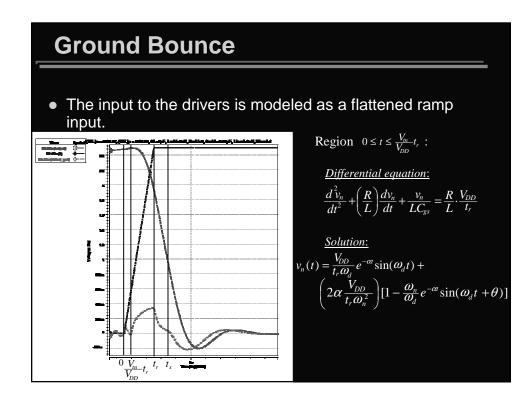
Short Channel MOS Device

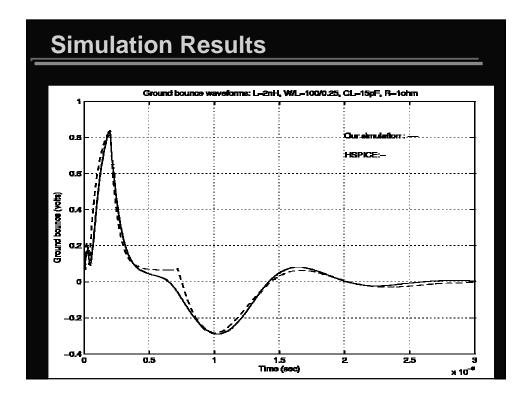
• With rapid decrease of the feature sizes of the MOS devices, the short channel effects must be accounted for.

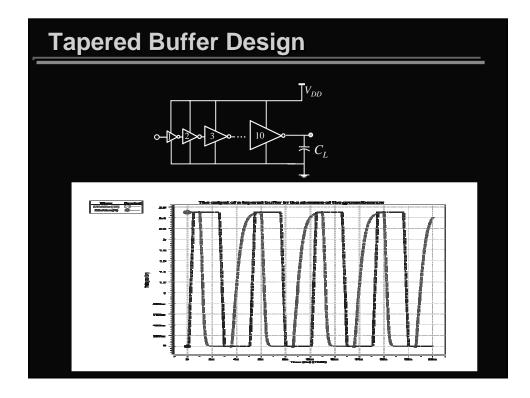
Observations:

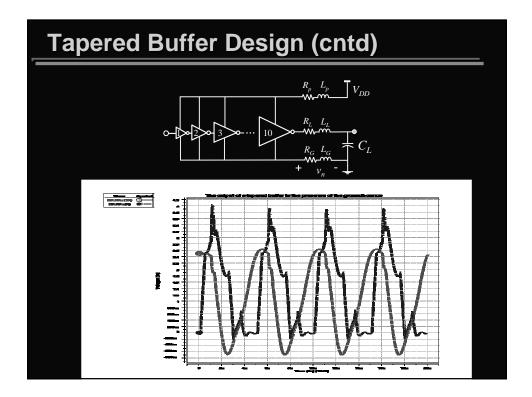

- Ignore the effect of channel-length modulation
- L_{eff} is 0.13µ-0.25µ in current technologies. The i_{d} - v_{ds} equation in the saturation region based on empirical results.
- To come up with a closed form delay expression, the lateral electric field in short-channel transistors is assumed to be a constant in terms of drain-source voltage.

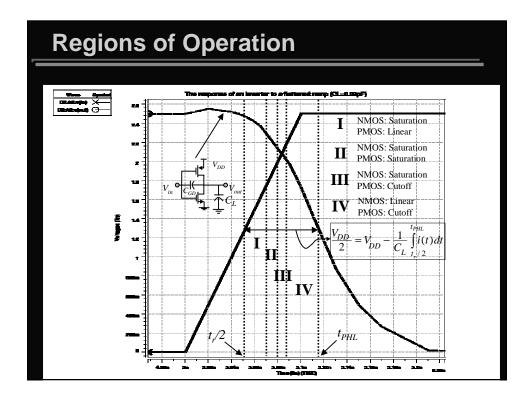

$$i_{d} = \begin{cases} \beta_{n} (v_{gs} - V_{m}) \\ 2\beta_{n} [(v_{gs} - V_{m}) - \frac{v_{ds}}{2}] \end{cases}$$


$$\int_{k}^{k} \geq V_{ds, \, sat}$$
; $\beta_n = \frac{0.5K_n(W/L)}{1/(V_{DD} - V_{tn}) + 1/LE_c}$


Ground Bounce


- Assume that *N* output drivers switch simultaneously while the remaining *M* drivers are quiet.
- The quiet drivers are in the linear region.





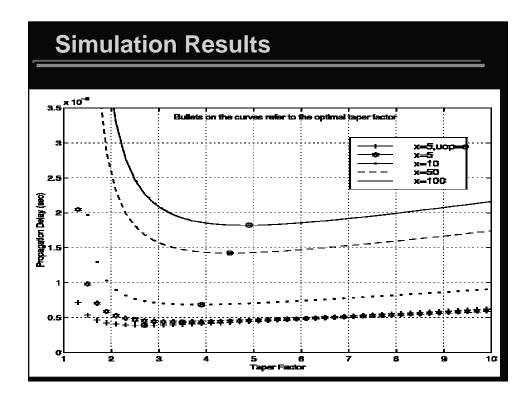
Propagation Delay

$$\begin{split} t_{PHL} &= t_{PHL,0} + t_{r0} \bigg[\frac{1}{4} \bigg(\frac{1}{2} - \frac{\beta_P}{\beta_n} \bigg) \bigg(1 - \frac{2V_T}{V_{DD}} \bigg) + \varepsilon \bigg] \\ & \varepsilon = \frac{1}{2} \bigg[1 + \frac{1 - V_T / V_{DD}}{1 - 2V_T / V_{DD}} \bigg] \\ t_{PHL,0} &= \frac{C_L}{2\beta_n (1 - 2V_T / V_{DD})} - \bigg[\frac{V_T / V_{DD}}{1 - 2V_T / V_{DD}} \tau \ln \bigg(\frac{1}{1 - V_T / V_{DD}} \bigg) \bigg] \\ & \tau = r_{DS} \left(C_L + C_{db,n} \right) \end{split}$$

- t_{r0} is the input rise-time of the single driver.
- $t_{PHL,0}$ is the 50% propagation delay in the ideal case of having an ideal step input.

• The total propagation delay is:
$$t_d = \frac{t_{PLH} + t_{PHL}}{2}$$

Propagation Delay


• Lemma 1.

4

- 1. Suppose that there is a chain of *P* inverters, each consisting of short channel devices.
- 2. Assume that the gate aspect-ratio of each stage is *u* times larger than that of the previous stage.
- 3. Assume that for $t_{r,i} = \eta t_{d,i} + t_{r,i-1}$ for $2 \le i \le P$ then the total propagation delay is given by:

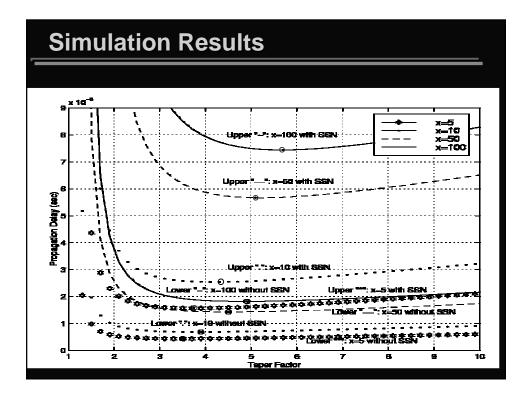
$$t_p = u \left[\frac{(\eta A + 1)^P - 1}{\eta A} \right] t_{p0} + \left[\frac{(\eta A + 1)^P - 1}{\eta} \right] t_{r0}$$

where $A = \frac{1}{8} - \frac{1}{8} \left(\frac{\beta_n}{\beta_p} + \frac{\beta_p}{\beta_n} \right)$ and $\leq \eta \leq 2$

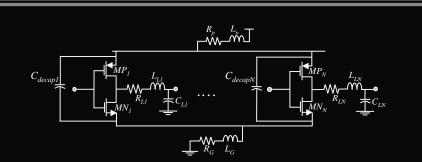
 t_{p0} is the propagation delay of a minimum size inverter when the input rise-time is zero.

Tapered Buffer Design with Ground Bounce

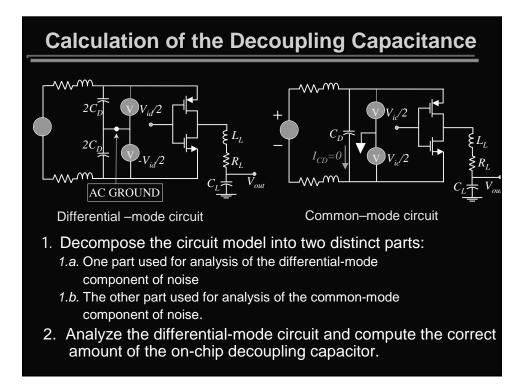
- First the impact of the ground bounce on the delay of the single buffer is studied.
- To simplify the formulations the pin-package-interface parasitic is modeled by a pure inductor.
- The pure inductive model yields sufficiently accurate result for the optimization problems.
- The propagation delay increases further due to the presence of the ground bounce:

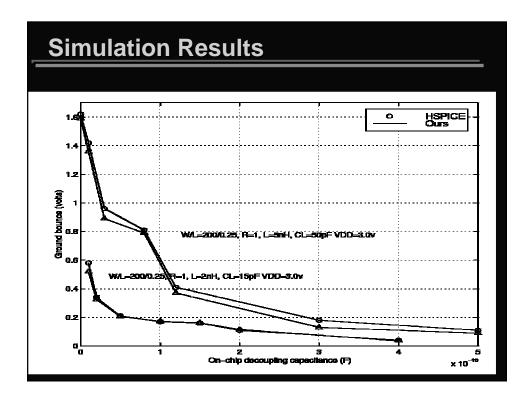

$$t_{p0, SSN} = t_{p0} + \frac{\delta}{t_{r0}}$$
 where $\delta = L^2 \left(\frac{\beta_n^2 + \beta_p^2}{2}\right) \left(\frac{V_{DD}}{V_{DD} - V_T}\right)$

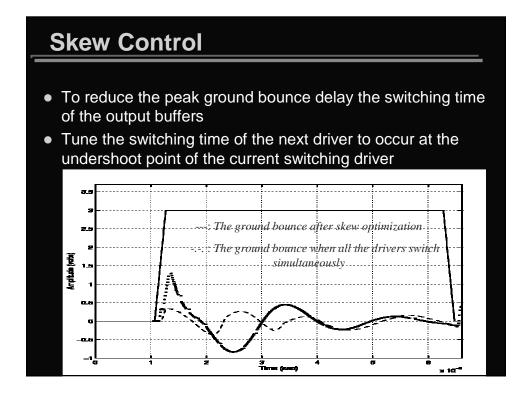
Tapered Buffer Design (cntd)


- Lemma 2.
 - For a multistage tapered buffer with the same specification given in lemma 1 and in the presence of the ground bounce, the total propagation delay is obtained by the following equation:

$$t_{p,SSN} = t_{p,initial} + \frac{\delta.A}{(\eta A + 1)^{P} (ut_{p0,SSN} + t_{r0}) - ut_{p0,SSN}}$$


where $t_{p,initial}$ has the same form as t_p given in previous equation except that t_{po} is replaced with $t_{p0,SSN}$.




On-chip Decoupling Capacitor

- Need to properly estimate the required amount of the on-chip decoupling capacitors.
- Overestimation is costly from the area point of view.
- Underestimation may lead to noise margin problems.
- The on-chip decoupling capacitor forces the same fluctuations to appear on the on-chip power and ground wires.

Experimental Setup			
$\begin{array}{c} 0.1pF & 0.05pF \\ \hline \\ 0.1pF & 0.05pF \\ \hline \\ 1 & 3nH & 0.5 & 3nH \\ \hline \\ 0.1pF & 0.05pF \\ \hline \\ 1 & 0.5nH & 1 & 1nH \\ \hline \\ 0.1pF & 0.05pF \\ \hline \\ \hline \\ \hline \\ \hline \\ 0.1pF & 0.05pF \\ \hline \\ $			
Frequency off	fset	Phase noise [dB/Hz]	Simulation [dB/Hz]
(kHz)		Analytical	
5.3		-92.2	-93.4
9.1		-96.4	-97.5
15.7		-100.3	-103
32.3		-109.3	-111.2
40		-110	-111.4
64		-112.4	-114.3
80		-115.6	-116.2
100		-119.7	-121.8

Conclusions

- A detailed analysis and optimization of the ground bounce was presented
- The method uses the accurate and simple chip-package interface circuit models
- The effect of ground bounce on the tapered buffer design was studied
- The effect of on-chip decoupling capacitor was analytically investigated
- A new skew control method for ground ounce optimization was proposed