

l able	1: Simula	tion res	ults for	output v	vaveform evalu	ation algo	rithm for F	Cπ load (prop	osed in Sectio	on 2) for	0.1µm technolo	gies (3 iter	rations	
	Driver an	d Load Pa	rameters	5	10% propagati input to	ion delay (fro 10% of outp	om 50% of out)	50% propagati input to	on delay (from 50% of output)	90% propagation delay (from 50% o input to 90% of output)				
T _{in} (pS)	$W_p(\lambda)/W_n(\lambda)$	$C_{l}(f\!F)$	$R(\Omega)$	$C_2(\mathbf{fF})$	Our Approach (pS)	Hspice (pS)	Error%	Our Approach (pS)	Hspice (pS)	Error%	Our Approach (pS)	Hspice (pS)	Error	
400	100/50	500	100	100	900	169	165	2.4	711	703	1.1	1705	1696	0.5
200	150/75	1500	200	400	147	144	2.1	640	635	0.8	1515	1491	1.6	
100	50/25	250	80	1000	190	186	2.1	1186	1168	1.5	2960	2890	2.4	
100	150/75	1000	500	1250	90	87 193	3.4 3.1 2.8	486 845	476 834	2.1 1.3 2.3	1825 2095 1650	1802 2080 1647	1.3 0.7 0.1	
600	80/40	350	150	1000	199									
300	200/100	1000	450	1650	102	105		401	392					
50	200/100	1500	650	2050	85 84		1.2	461	456	1.1	2047	2037	0.4	
250	20/10	450	450 350		426	419	1.7	2586	2572	0.5	6420	6348	1.1	
150	160/80	850 1000		1500	86	82	4.9	349	336		1642	1621	1.3	
550	150/75	1300	1300 400		185	181 2.2		721	707	2.0	2560	2495	2.6	
350	120/60	1600	500	1500	205	203	0.9	1012	1000	1.2	3145	3097	1.5	
450	30/15	500	100	600	149	142	4.9	515	503	2.4	1190	1149	3.7	
	Avg.						2.6			1.7			1.4	

ļ		Ex	pe	rim	ent	al	Re	su	lts					
	Ta	ble 2: Sin	nulatio	n results fo	capacitive	load co	isidering	crosstall	k (cf. section	3) for 0.1µn	n technolo	gies (3 iterati	ons).	
	Driver A			Driver B	•	Lo	ad Parame	ters	50% propa	gation delay of	driver A	50% propagat	ion delay of	driver B
T _{in} (ps)	$\begin{array}{c} W_p(\lambda)'\\ W_n(\lambda) \end{array}$	50% Coord. (pS)	T _{in} (ps)	$\begin{array}{c} W_p(\lambda) \\ W_n(\lambda) \end{array}$	50% Coord. (ps)	Ca (fF)	Cb (fF)	Cc (fF)	Our Appoach (pS)	Hspice (pS)	Error%	Our Approach (pS)	Hspice (pS)	Error%
100	100/50	50(R)	200	150/75	150 (F)	500	400	500	645	637	1.3	465	458	1.5
100	100/50	50(R)	200	150/75	250 (F)	500	400	500	570	550	3.6	475	464	2.4
100	100/50	50(F)	200	150/75	150 (F)	500	400	500	281	271	3.7	185	177	4.5
200	150/75	100(F)	350	250/125	750 (F)	1000	900	1500	705	697	1.1	253	241	4.9
200	150/75	100(R)	350	250/125	750 (F)	1000	900	1500	602	595	1.2	681	670	1.6
350	120/60	175(F)	150	80/40	650 (R)	700	800	500	521	505	3.2	995	975	2.1
350	120/60	175(R)	150	80/40	650 (R)	700	800	500	415	405	2.5	402	391	2.8
400	250/125	200(R)	350	120/60	500 (R)	1100	900	1000	341	325	4.9	286	279	2.5
400	250/125	200(F)	350	120/60	900 (R)	1100	900	1000	356	346	2.9	1189	1149	3.5
	Avg. **F: Falling i	nput, R: Ris	ing input	<u> </u>		<u> </u>					2.7		<u> </u>	2.9
Soro	ush Abt	oaspou	r					ASP-D	AC 2004			Ma	ssoud F	Pedran

			(p	eri	me	er		al	R	e	SL	ult (cf. Sc	S	(1) for	0 1um	tachur	slogies (2	litore	tions)			
	Driver A			Driver B			Load Parameters										50% propagation delay of driver A			50% propagation delay of driver B		
T _{in} (ps)	$\begin{array}{l} \mathbb{W}_p(\lambda) \\ \mathbb{W}_n(\lambda) \end{array}$	50% Coor. (pS)	Tin (ps)	$\begin{array}{c} \mathbb{W}_p(\lambda) \\ \mathbb{W}_n(\lambda) \end{array}$	50% Coor. .(pS)	C _{1,a}	R _{l,s}	C _{2,8}	C _{1,b}	R _{2,5}	C _{2,b}	$C_{1,c}$	C _{2,c}	C _(a,b)	C _(b,a)	Our App. (pS)	Hspice (pS)	Err. (%)	Our App. (pS)	Hspice (pS)	Err. (%)	
100	100/50	50(R)	200	150/75	150(F)	300	100	800	800	300	999	400	500	100	150	675	630	7.1	1109	1050	5.6	
100	100/50	50(F)	200	150/75	250(F)	600	200	400	500	400	800	450	650	200	350	985	945	4.2	470	442	6.3	
200	150/75	100(F)	350	250/125	750(F)	500	300	400	600	200	900	350	250	300	100	717	688	4.2	485	466	4.1	
350	120/60	175(F)	150	80/40	650(R)	600	500	500	400	200	500	450	500	350	400	535	512	4.5	1430	1390	2.9	
400	250/125	200(R)	350	120/60	500(R)	700	350	900	500	300	600	350	250	450	150	513	489	4.9	522	495	5.4	
200	150/75	100(R)	350	250/125	750(F)	800	500	950	450	350	900	250	450	350	300	511	489	4.5	407	391	4.0	
400	250/125	200(F)	350	120/60	900(R)	250	150	650	350	125	800	650	350	125	275	312	291	7.2	1345	1296	3.8	
1	Avg.	=																5.2			4.6	
	***F: Fallú	ıg input, R	.: Rising	mput																		
oroush Abbaspour									,	ASP-	DAC	200)4					Massoud Pedram				

