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Abstract - This work presents accurate closed-form expressions for
the interconnect energy dissipation in high-speed ULSI circuits.
Unlike previous works, the energy is calculated using an approxi-
mated expression for the driving-point impedance of lossy coupled
transmission lines which itself is derived by solving Telegrapher’s
equations. The effect of electromagnetic (inductive and capacitive)
couplings on the energy dissipation is accounted for in the deriva-
tions. We synthesize a new stable circuit that is capable of modeling
the transmission line for a broad range of frequencies. Experimental
results show that the energy calculated using this equivalent circuit is
almost equal to the one calculated by solving the more complicated
transmission line equations directly.

1.  INTRODUCTION

The International Technology Roadmap for Semiconductors (ITRS)
predicts that by 2010 over one billion transistors will be integrated
into a single monolithic die [1]. The wiring system of this one-billion
transistor die will deliver signal and power to each transistor on the
chip, provide low-skew and low-jitter clock to latches, flip-flops and
dynamic circuits, and also distribute data and control signals through-
out the chip [2]. Providing the required global connectivity throughout
the whole chip demands long on-chip wires. These global wires
should deliver high frequency signals (presently at around 1-2GHz) to
various circuits. This implies that the global wires exhibit transmis-
sion line effects including electromagnetic coupling. On the other
hand, as technology sizes continue to decrease, many new effects are
being observed due to the use of nanometer technologies. Some sig-
nificant deep sub-quarter-micron effects are caused by increasing
cross-coupling capacitance and coupling inductance. So far, the well-

known model has been used as an interconnect energy
model, where C includes the capacitance of the interconnect and the
capacitances of the driven circuits, and V is the voltage swing. This
model, however, fails to predict the interconnect energy dissipation in
the current range of clock frequencies, where the signal transients do
not usually settle to a steady state value due to the small clock periods.
Moreover, this model does not consider coupling noise as well as
other transmission line properties. As we will see in this paper, these
effects must be accounted for in the energy calculations that will oth-
erwise lead to erroneous results. In paper [3], an analytical intercon-
nect energy model with consideration of event coupling has been
proposed. Although this work considers the crosstalk effect on the
interconnect energy dissipation, it uses the distributed ladder RLC cir-
cuits to model the lossy transmission line effects. In paper [4], authors
showed that using distributed RLC circuits do not capture all behav-
iors of lossy transmission lines that can be captured otherwise using
the transmission line equations.

In this paper, accurate expressions for the energy dissipation of
coupled interconnects are obtained while addressing two important
problems simultaneously. The first problem is to analyze the transmis-
sion line effects on the energy dissipations. The second problem is to
consider the effect of electromagnetic coupling on the interconnect
energy dissipation.

Section 2 gives a comprehensive analysis of energy dissipation in
RLC circuits. This analysis provides helpful observations regarding
the energy calculations that are extensively used in section 3. In sec-
tion 3, a new RLC circuit configuration is synthesized whose input
impedance can accurately estimate the driving-point impedance of
coupled lossy transmission line. Using this circuit we derive the total

energy dissipation of coupled lossy transmission lines. Simulations
and experimental results provided throughout this section confirms
the accuracy of our model. Finally, section 4 presents the conclusions
of our paper.

2. ENERGY DISSIPATION OF PASSIVE RLC CIRCUITS

One common way of studying the parasitic effects of an on-chip inter-
connect on the performance of a VLSI circuit is to model it by a large
number of cascaded ladder RLC circuits. Therefore a relevant starting
point for studying the energy dissipation of on-chip interconnects is to
investigate the energy dissipation of a passive RLC circuit, demon-
strated in Fig. 1, that is excited by a unit step voltage. Depending on
the relative values of the circuit elements, this circuit exhibits either of
the two possible transient responses as also depicted in Fig. 1.

Fig. 1. An RLC circuit excited by a unit step voltage. Current waveforms are
shown for both the underdamped and the overdamped cases.

The total energy delivered by the input source to the passive circuit is
as follows:

 (1)

In the next two sub-sections we obtain the total as well as the dissi-
pated energy for both underdamped and overdamped RLC circuits.

2.a.    Energy dissipation of an underdamped RLC circuit
In the underdamped case, the voltage and current transient waveforms
oscillate toward their steady-state values. This transient behavior

occurs when . In terms of energy, the stored energy in
the capacitor and/or in the inductor is being transferred back and forth
between reactive elements. If the circuit is lossless (R = 0), this energy
transfer will be performed endlessly. However with a resistor present
in the circuit, a portion of the energy is dissipated in the resistor. To
obtain the energy dissipated by the circuit, we first obtain the total
energy generated by the input source.

(2)

where is the current flowing through the underdamped circuit.
This current is easily obtained by solving the characteristic differen-
tial equation of the RLC circuit.

(3)
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where α, the damping constant, is , ωn , the resonant fre-

quency, is , and ωd , the oscillation frequency, is equal to

. Replacing the in(t) in Eq. (2) with its equivalent
expression given in Eq. (3) and computing the resulting integral leads
to the following equation:

(4)

For the passive RLC circuit driven by a unit step function, the mag-
netic energy across the inductor is transferred to the electric energy
across the capacitor in the steady-state. Therefore, the total stored

energy in reactive elements is . Consequently, the energy
dissipated in a passive underdamped RLC circuit is as follows:

(5)

From Eq. (5) it is concluded that the energy dissipated in any pas-
sive underdamped RLC circuit that is driven by a unit step function is

simply .

Now let us assume that the input source to the RLC circuit is a peri-
odic rectangular waveform, which is almost the case in digital inte-
grated circuits. The total energy delivered by the input source during
the low-to-high transition of the input source is as follows:

(6)

Fig. 2 shows the energy variation as a function of the fundamental
period, T, for an underdamped RLC circuit excited by a periodic rect-
angular voltage signal. Please note that for small periods,

the energy model gives rise to a wrong value.

Fig. 2. The total delivered energy vs. the fundamental periods of oscillations
for an underdamped RLC circuit

The dissipated energy in the low-high transition of the input source
is:

(7)

In equations (6) and (7), . As T, the fundamental
period of the input waveform, becomes larger, the second term inside
the bracket becomes smaller, and in the limit, the energy expression
becomes identical to Eq. (5).

❐

2.b.    Energy dissipation of an overdamped RLC circuit
In the overdamped case, the resistor is sufficiently large (i.e.,

) such that it eliminates the resonances from current and
voltage waveforms. The total energy delivered by the input source is
the same as Eq. (1), which is rewritten here for convenience.

(8)

where is the current flowing through the overdamped circuit.
This current is easily obtained by solving the characteristic differential
equation of the RLC circuit.

(9)

where . The total delivered energy is:

(10)

Similar to the underdamped case, consider a periodic rectangular
waveform at the input. The total energy delivered by the input source
is:

(11)

Fig. 3 shows the energy variation in terms of the variation in the fun-

damental period. The error caused by using the model in
the overdamped case is smaller than that in the underdamped case.
However, in practice, the underdamped response is occurred more fre-
quently.

Fig. 3. The total delivered energy vs. the fundamental periods of oscillations
for an overdamped RLC circuit

The energy dissipated in the low-high transition of the input source
will be as follows:

(12)

In equations (11) and (12), . As T becomes

larger the energy expression approaches .
❐

2.c.    Frequency-domain analysis
From the above analysis some valuable conclusions are drawn. First
of all, the energy dissipation of a passive RLC circuit excited by a unit
step input is irrespective of the circuit conditions (i.e.,
overdamped or underdamped). From another perspective, the capaci-
tor charges up to the input step voltage, Vm , and in the steady-state is
modeled as an open circuit. Therefore, the total stored energy appears

as electric field energy across the capacitor ( ). One impor-
tant concern is to find out a circuit interpretation of the total energy
generated by the input source. To address this concern, consider the
driving-point admittance of RLC circuit of Fig. 1.

(13)

represents the equivalent DC driving-point admittance
of an RLC circuit in the steady-state condition. This is an important
notion that will be utilized later on during the simplification of the
driving-point admittance as well as the derivation of the energy dissi-
pation of a coupled transmission line. Direct calculations reveal that

. Hence the steady-state current is an impulse func-
tion, and the total delivered energy by the source as follows:
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(14)

As a generalization, consider a ladder circuit consisting of N RLC
circuits with a unit step input as shown in Fig. 4.a. The equivalent cir-
cuit for the energy analysis of each RLC subsection contains only the
capacitor of that RLC subsection. The equivalent circuit is depicted in
Fig. 4.b. The total energy delivered by the source is:

= (15)

Fig. 4. A ladder of cascaded RLC circuits. (a) the circuit schematic. (b) the
equivalent circuit for the energy analysis

The above discussion will be widely used in the following sections.

3. ENERGY DISSIPATION OF LOSSY TRANSMISSION
LINES
Thus far the main attention has been focused on the energy analysis of
single passive RLC circuits. There are, however, two major questions
that also need to be addressed. In present-day digital and mixed-signal
integrated circuits, the global on-chip interconnects must provide the
required connectivity and performance for clock rates of 1.0-2.0GHz,
which is in a microwave frequency range. This certainly demands a
knowledge of electromagnetic-field theory to analyze the on-chip wir-
ing effects. A related question that arises is whether the transmission
line effects of on-chip interconnects can have any affect on the energy
dissipation. On the other hand, high wiring density and high operating
frequencies result in high capacitive and inductive coupling. Conse-
quently, the second question is whether the electromagnetic coupling
has any impact on the energy dissipation. This section indeed
addresses these questions.

The critical global interconnections, such as clock lines, control
lines, and data buses (which can be 32-128 bits wide) between proces-
sor and on-chip cache reach more than 100K connections. The propa-
gation delay of signals traveling through these global wires is
comparable to the time of flight. In other words, the line length is
comparable to the propagated signal wavelength, λ, which is on the
order of 0.7-2.2cm. This implies that transmission-line properties have
to be taken into account. It was shown in [4] that any two uniform par-
allel conductors, the signal and the return paths, that are used to trans-
mit electromagnetic energy can be considered transmission lines. The
return path can be a ground plane, a ground conductor, or a mesh of
ground lines on many layers. Solutions to Maxwell’s equations for the
electric and magnetic fields around conductors are current and voltage
waves. The solution is completely determined in terms of the charac-
teristic impedance, Zo, and the propagation constant, γ. Consider a

single transmission line as shown in Fig. 5. The voltage and current in
the frequency domain at any point x along the line is expressed as a
combination of incident and reflected waves.

Fig. 5. The schematic of a lossy transmission line along with the circuit repre-
sentation of a differential length ∆x

(16)

(17)

where . The load termination determines how

much of the wave is reflected upon arrival at the wire end. The reflec-
tion coefficient, , determines the amount of the incident wave that
reflects back to the line as a result of impedance mismatch between
the line and the load.

(18)

The concept of the reflection coefficient is generalized to define the
reflected and incident quantities at any arbitrary point along the line.

(19)

The driving point impedance, Zin, is the ratio of the voltage and cur-
rent waves at the input source end.

(20)
where h is the line length. In the above equation, the load impedance,
ZL, is normally a capacitive load in ULSI circuits, since the intercon-
nect normally drives a CMOS circuit whose input impedance is purely
capacitive.

To account for the electromagnetic coupling effects on the inter-
connect energy dissipation, the total line inductance and capacitance
per unit length are modified accordingly. The effect of capacitive cou-
pling is predicted by considering the switching transients of the imme-
diate neighboring wires. The effect of nonadjacent lines are ignored
because the capacitive coupling has a near-field effect, and the adja-
cent aggressive lines behave as shield lines for non-adjacent wires. On
the contrary, the inductive coupling has a far-field effect. The non-
adjacent lines have a considerable amount of inductive couplings on
the victim line. This makes the analysis of inductive coupling particu-
larly difficult. In addition, the current return paths cannot be easily
configured [4] in the circuit. This causes the problem of inductive cou-
pling to become even more complicated.

The effect of capacitive coupling is taken into account by using the
Miller theorem as also shown in Fig. 6.

The Miller capacitance per unit length seen across the input port of
the transmission line 1 as a result of switching in line 2 is:

(21)

The voltage waves V2 and V1 are obtained by combining their inci-
dent and reflected wave components at their corresponding input
ports, similar to Eq. (16). To verify the accuracy of Eq. (21), the two
transmission lines in Fig. 6 are simulated using star-HSPICE.

Fig. 6. Two capacitively coupled transmission lines. The traveling voltage
waves are 180  out of phase.

Input sources are 180 out of phase as depicted in Fig. 6. Fig. 7.a
shows current and voltage waveforms of line 1. We then decouple line
1 from line 2 by replacing cross-coupling capacitance cc with its

Miller capacitance cc,M in line 1, and then simulate this new circuit
with HSPICE again. The voltage and current waveforms are depicted
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in Fig. 7.b. Comparing voltage and current waveforms in Fig. 7.a with
those in Fig. 7.b verifies the accuracy of Eq. (21).

Fig. 7. The source voltage as well as driving-point current and voltage wave-
forms in a lossy coupled transmission line. (a) results obtained using HSPICE

simulation on the coupled line. (b) results obtained using HSPICE on the
decoupled line after applying Miller theorem

The inductive couplings between transmission lines are accounted
for by an algebraic summation of each line’s self inductance and all
mutual inductances between that line and other lines considering also
the current direction flowing through the lines. For example in a set of
N coupled transmission lines, the total per unit length inductance of
the j-th line that is magnetically coupled to other lines is:

After characterizing the capacitive and inductive couplings, the
next step is to obtain a relevant rational expression for the driving-
point impedance of a coupled transmission line. According to Eq.
(20), the input impedance of a transmission line is a nonlinear func-
tion of frequency. Direct substitution of this nonlinear expression into
the energy equation does not yield a closed-form expression for the
energy dissipation of the lossy transmission line. Still it is possible to
simplify Eq. (20), using some observations, and obtain an accurate
expression for the energy dissipation. According to section 2.c, if the
abrupt transitions of the input waveform are sufficiently far away in
time so as to allow the circuit to come very close to its steady-state
response, then the total energy delivered by the source is evaluated
using the driving point impedance at low frequencies. This observa-
tion is utilized here to simplify Eq. (20). First we evaluate tanh(.) at
low frequencies:

, for small values of |s| (22)

This leads to the following relationship:

(23)

where Cint,tot is the interconnect capacitance including the Miller
capacitance and the interconnect-substrate capacitance. To find out
how accurately Eq. (23) can predict the actual driving-point imped-
ance of a lossy line, we utilize the per unit length parameters of the

top-level metal layer in 0.11µ technology that are directly calculated
from interconnect parameters provided by ITRS [1]. A comparison is
made between magnitude response of the driving-point impedance
given by Eq. (20) and the magnitude response of the expression in Eq.
(23) for four different lengths. Fig. 8 shows such a comparison in a
logarithmic scale. Obviously, the approximation is accurate in a broad
range of frequencies. For longer lengths of the line the discrepancy
begins to appear in lower frequencies.

Fig. 8. A comparison between the magnitude response of line’s actual driving-
point impedance (Eq. (20)) and that of line’s approximated rational impedance

function (Eq. (23)) for four different line lengths

It would be instructive if one could propose a stable circuit realization
whose impedance is expressed by Eq. (23). For a lossy transmission
line whose driving-point impedance near the DC frequency is
expressed by Eq. (23), a stable RLC-π equivalent circuit realization
can be synthesized as demonstrated in Fig. 9. Lint,tot is the total induc-
tance of the lossy line including the self and mutual inductances, and
Rint is the line resistance. C1, C2, and C3 are related to actual capaci-
tances of the line and the load through the following relationships:

, ,
(24)

The input impedance of the transmission line in Fig. 9 in the low-
frequency range is:

(25)
The input impedance of the RLC-π circuit shown in Fig. 9 is:

    (26)

where represents the series combination of C2 and C3.
Equating the s coefficients of the driving-point impedance

of the transmission line with those of the input impedance
of the proposed RLC circuit verifies circuit equivalence.
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Fig. 9. A lossy transmission line and its equivalent RLC-π circuit representa-
tion

Fig. 10 shows the magnitude response of the driving-point admit-
tance of a lossy transmission line which is electromagnetically cou-
pled to a similar line. First, the circuit is simulated using star-HSPICE.
Eq. (20) is then utilized and the magnitude response of the admittance
function (which is the inverse of the impedance function) is calcu-
lated. As indicated in Fig. 10, the results obtained by HSPICE and by
Eq. (20) are indistinguishable from each other. In the next step, Eq.
(26) is utilized to calculate the magnitude response of the driving-
point admittance for the equivalent RLC-π circuit. This circuit accu-
rately represents the driving-point admittance of a lossy coupled trans-
mission line in lower frequencies up to 1.6GHz. Consequently, the
energy calculations using the RLC-πcircuit yield the expressions that
are exactly equal to those of the actual coupled lossy line.

Fig. 10. The magnitude response of the driving point admittance of an electro-
magnetically coupled lossy transmission line obtained using HSPICE simula-
tion, using the direct simulation of Eq. (20), and by replacing the line with its

equivalent RLC-π circuit

The RLC-π equivalent circuit synthesized for a lossy coupled
transmission line is used to compute the driving point impedance and
interconnect energy calculation. The effect of the input source imped-
ance on the total energy dissipation is readily taken into account by
connecting the input terminal of the equivalent RLC-π to input source.
The π structure of the RLC-π circuit makes the impedance calcula-
tions very simple. For instance, the diffusion capacitances of the driv-
ing CMOS circuits (Cd in Fig. 11) are placed directly in parallel with
the capacitance, C1 of the RLC-π circuitry and consequently no addi-
tional calculation is required.

To include the most complete scenario, consider a lossy transmis-
sion line that is coupled to other lines through magnetic as well as
electric field couplings. Furthermore, suppose that this line is driven
by a CMOS inverter. The load is another CMOS gate that is connected

to the other port of this lossy transmission line. The coupling effects
are treated the same way as we discussed earlier in this section. Fig. 6.
shows the circuit that needs to be analyzed.

Fig. 11. The equivalent RLC-π circuit model of a lossy coupled trans-
mission line driven by a CMOS inverter

Due to the changes in the operation regions of NMOS and PMOS
transistors during low-to-high and high-to-low transitions of the
driver’s output, we must distinguish between low-to-high and high-to-
low transitions. During the low-to-high transition the PMOS transistor
is in the linear region and provides a conduction path from the supply
to the load. During the high-to-low transition the NMOS transistor is
in the linear region, and no additional energy is transferred out of the
power-supply.

We calculate the energy transferred out of the power-supply during
a low-to-high transition. This energy is the total dissipated energy per
clock period of a CMOS gate that drives another CMOS circuit
through a coupled lossy transmission line. The energy delivered by the
power-supply through the gate in a low-to-high transition is specified
by Eq. (1) where vin(t) =VDDu(t)) (u(t) is the unit step function). The

current is obtained using the driving point admittance of the circuit
indicated by Fig. 11:

where is the driving-point admittance seen from the power-sup-

ply to the source connection of the PMOS transistor in Fig. 11.

is the parallel combination of and the dif-
fusion capacitance Cd of MOS devices. Once again we distinguish
between the overdamped and the underdamped responses. We make
use of the formulations given in section 2 to obtain the energy expres-
sion for each of these responses.

Underdamped response
Similar to the discussion in section 2.a, if

then the current and voltage waveforms will

oscillate until they reach their steady state value. Utilizing Eq. (3), the
input current to the circuit is as follows:

(27)

where is the equivalent capacitance of the RLC-π
circuit, , , and

. C1, C2, and C3 are given by Eq. (24). The total
energy delivered by the power-supply is:

(28)

Remember that . We observe that if a CMOS
inverter driving a lossy coupled line undergoes an underdamped oscil-

latory response, and if (or if

), then the energy expression
becomes:

  (29)

Equations (28) and (29) give the actual and steady-state energy dis-
sipation per clock period, respectively, when the circuit experiences
an underdamped oscillatory transient response.
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Overdamped response

We recall from section 2.b that if , then
we have overdamped response. Utilizing Eq. (9), the input current to
the circuit is as follows:

(30)

where . The total energy delivered by the power-
supply for the overdamped transient response is:

(31)

We observe that if a CMOS inverter driving a lossy coupled line

has an overdamped response, and if , then the
energy dissipation per each clock period becomes:

 (32)

Equations (31) and (32) give the actual and the steady-state energy
dissipation per clock period, respectively, when the circuit experiences
an overdamped transient response.

In the energy calculations of interconnects driven by CMOS cir-
cuits, it was normally assumed that transients in the current and volt-
age waveforms have been settled to steady state values and the energy

was thus simply equal to . Section 2.a and 2.b showed that
this expression can yield quite an inaccurate result for the dissipated
energy of the interconnect in high frequency ULSI circuits. Figures 12
and 13 show that modeling a lossy transmission line with a single
RLC circuit do not still provide accurate results for the dissipated
energy in both underdamped and overdamped cases. These figures
show the dissipated energy of a single lossy transmission line for vari-
ous line lengths when the line is modeled by the RLC-π circuit and
compare it with that obtained using a single RLC circuit. For small
clock cycles, the RLC circuit model is unable to give a good energy
estimate. This is true for both overdamped and underdamped circuits.
Figures 12 and 13 also reveal that for both underdamped and over-
damped circuits when the clock cycle time is sufficiently long, the
results obtained by energy calculations in RLC and RLC-πcircuits are

both closely equal to .

Fig. 12. A comparison between the energy-length variation of the equivalent
underdamped RLC-π circuit and that of single underdamped RLC circuit of a

lossy transmission line. The comparison has been made for two values of cycle
time, T = 1nsec and T = 80nsec

Fig. 13. A comparison between the energy-length variation of the equivalent
overdamped RLC-π circuit and that of single overdamped RLC circuit model-
ing a lossy transmission line. The comparison has been made for two values of

cycle time, T = 1nsec and T = 0.9µsec

4. CONCLUSION AND FUTURE WORKS

This paper presented accurate closed-form expressions for the inter-
connect energy dissipation in high-speed ULSI circuits. The energy
was calculated using an approximate expression for the driving-point
impedance of a lossy transmission line. The effect of electromagnetic
(inductive and capacitive) couplings on the energy dissipation was
also accounted for in the derivations. We synthesize a new stable cir-
cuit that is capable of modeling the transmission line for a broad range
of frequencies. Several experimental results show that the energy cal-
culated using this circuit is almost equal to the one calculated by
directly solving the complicated transmission line equations.

This paper showed that the actual energy dissipation can be quite

different from the value predicted by the steady-state
model. Using this notion, we will define a new metric that enables us
to design interconnects in such a way as to optimize the energy dissi-
pation subject to a given noise margin.
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