Memory Bus Encoding for Low Power: A Tutorial

Wei-Chung Cheng and Massoud Pedram
University of Southern California
Department of EE-Systems
Los Angeles CA 90089

Outline

• Background
• Memory Bus Encoding Techniques
 – Algebraic codes
 – Permutation codes
 – Probabilistic codes
• Conclusions
Power Dissipation Equation

- \(P \sim V^2 \cdot C \cdot f \cdot N \)
- Low Power Techniques
 - Voltage Scaling
 - Capacitance Reduction
 - Frequency Scaling
 - Switching Activity Reduction
- Memory Modules
 - Fixed
 - High
 - High
 - Memory Bus Encoding

Bus Encoding Example

<table>
<thead>
<tr>
<th>Binary Code</th>
<th>Gray Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1: 0000</td>
<td>B1: 0000</td>
</tr>
<tr>
<td>A2: 0001</td>
<td></td>
</tr>
<tr>
<td>A3: 0010</td>
<td>B2: 0001</td>
</tr>
<tr>
<td>A4: 0011</td>
<td>B3: 0011</td>
</tr>
<tr>
<td></td>
<td>B4: 0010</td>
</tr>
<tr>
<td>SA=6</td>
<td>SA=4</td>
</tr>
</tbody>
</table>
Generic Bus Encoding Architecture

Bus Encoding Taxonomy
- Redundancy
 - Irredundant: Gray, Pyramid
 - Redundant: T0, Bus Invert, Working Zone
- Circuit
 - Non-terminated: TTL, LVCMOS
 - Terminated: RAMBUS, GTL
- Signal Level
 - Level Signaling
 - Transition Signaling
- Location
 - On-chip Bus: Between CPU core and Caches
 - Host Bus: Between Pentium and Chipset
 - Memory Bus: Between Chipset and DRAM
- Address/Data
 - Separated
 - Multiplexed
- Multiplexing
 - Non-multiplexed: SRAM
 - Multiplexed: DRAM
Code Classification

1. Algebraic Codes
 \(c_i \, op \, x \) : \(op \) is a binary operation

2. Permutation Codes
 \(f(c_i) \) : \(f \) is a fixed function

3. Probabilistic Codes
 \(f_x(c_i) \) : \(f_x \) is an application-specific function

1 Algebraic Framework

- Decoding
 - \(c_i \, op \, x \)
- Notation
 - \(<\{x\},op>\)
Bus Invert: \(<\{0,1\},XOR>\)

- Stan, TVLSI 1995
- Extra signal: \(INV\)
 \[s_i = c_i, \quad \text{if } INV=0 \]
 \[s_i = c_i \oplus 1, \quad \text{if } INV=1 \]
- Encoding
 - Hamming distance

Partial Bus Invert: \(<\{0,x\},XOR>\)

- Shin et al., ISLPED 1998
 - Bus Partitioning
- Extensions
 - M-redundant Bus Invert
 - Spatial partitioning
 - Interleaving Partial Bus Invert, ICVC 1999
 - Temporal partitioning
Transition Signaling: $\langle c_{i-1}, \text{XOR} \rangle$

- Decoding function
 $s_i = c_i \text{XOR} c_{i-1}$
- Efficient when c_i and c_{i-1} are similar

T0: $\langle s_{i-1}, \text{Add,1} \rangle$

- Benini et al., Great Lakes VLSI Symp. 1997
- Extra signal: INC
 $s_i = s_{i-1} \text{ add 1},$ if INC=1
 $s_i = c_i,$ if INC=0
- Effective for sequential access patterns
- Prediction
Prediction-based: \(<\{s_{i-1}\},\text{XOR},1\>\)

- Ramprasad et al., TVLSI 1999
 - Inc-Xor
- Fornaciari et al., CODES 2000
 - Offset-Xor
 - T0-Xor
- For sequential access patterns

Hybrid Encoding

- Benini et al, DATE 1998
- Instruction/Data interleaving
- T0 for instructions; Bus Invert for data
- Examples
 - T0_BI
 - Dual_T0
 - Dual_T0_BI
Working Zone: \{a[], ADD\}

- Musoll et al, TVLSI 1998
- Instruction/Data segments
- Offset
- One-hot coding

Comparison

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Binary</th>
<th>Ø Identity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus Invert</td>
<td>{0,1} XOR</td>
<td></td>
</tr>
<tr>
<td>Partial Bus Invert</td>
<td>{0,x} XOR</td>
<td></td>
</tr>
<tr>
<td>Transition Signaling</td>
<td>{c_{i-1}} XOR</td>
<td></td>
</tr>
<tr>
<td>T0</td>
<td>{c_{i-1}} ADD_1</td>
<td></td>
</tr>
<tr>
<td>Inc-Xor</td>
<td>{c_{i-1}} XOR_1</td>
<td></td>
</tr>
<tr>
<td>Working Zone</td>
<td>{x[]} ADD</td>
<td></td>
</tr>
</tbody>
</table>
2. Permutation Codes

- Fixed function: \(f(c_i) \)
- Irredundant
- Do not need the previous word \(s_{i-1} \) or \(c_{i-1} \)
- Examples
 - Gray code
 - Pyramid code
- For sequential access patterns

Gray Code

- Su et al., ISLPED 1995
- Only one transition between consecutive words
- For address busses
Pyramid Code

- Cheng et al., ISPLED 2000
- For multiplexed DRAM address busses
- No transition between consecutive words
- 50% switching activity reduction

3. Probabilistic Code

- Given a program trace
- Statistics Information
 - First-order: \(f(c_i) \)
 - Second-order (pair-wise): \(f(c_{i-1}, c_i) \)
- Examples
 - Static analysis
 - Limited-weight code, Beach code, Clustered and Discretized code
 - Dynamic analysis
 - Adaptive, Codebook-based
Limited Weight Code

- Stan et al., TVLSI 1997
- K-limited code
- First-order analysis
- First-order encoding

Beach Code

- Benini et al., TVLSI 1998
- Second-order analysis
- First-order encoding
Entropy-reduced Framework

- Ramprasad et al., TVLSI 1999
- Functions
 - F: predict
 - Identity
 - Increment
 - $f1$: error
 - Xor
 - Difference
 - $f2$: entropy
 - Invert
 - Probability (pbm)
 - Value (vbm)
- Examples
 - Second-order analysis; First-order encoding
 - $\langle s_i, f_i \rangle$, $\text{xor} \cdot f(c_i)$

<table>
<thead>
<tr>
<th>Code-name</th>
<th>F</th>
<th>$f1$</th>
<th>$f2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>xor-pbm</td>
<td>identity</td>
<td>xor</td>
<td>pbm</td>
</tr>
<tr>
<td>inc-xor</td>
<td>increm</td>
<td>xor</td>
<td>identity</td>
</tr>
</tbody>
</table>

Transition Encoding

- Benini et al, DAC 1999
- Second-order analysis
- Second-order encoding
 - Encode transitions instead of words
- Static
 - Exact
 - Clustered
 - Discretized
- Adaptive
Codebook

- Komatsu et al., Great Lakes VLSI Symp. 1999
- Second-order analysis
- Second-order encoding
- Sort and encode dynamically

More Recent Work

- Coupling-driven encoding
 - Kim et al., ICCAD 2000
 - Sotirsadis et al., ICCAD 2000
Conclusions

- Encoding can reduce the switched capacitance on a bus

- Different types of codes have been proposed, each applicable to a particular type of bus and data access pattern
 - Algebraic codes
 - \(\langle x \rangle \text{.op} \)
 - Permutation codes
 - Probabilistic codes
 - Analysis/Encoding
 - First-order
 - Second-order
 - Static vs. Adaptive