Effective Capacitance for the RC

 Interconnect in VDSM TechnologiesSoroush Abbaspour and Massoud Pedram
Department of Electrical Engineering-Systems
University of Southern California

Outline

- Background
- Prior Work
- A New Algorithm for Calculating the Effective Capacitance
- Experimental Results
- Conclusion

Circuit Delay

$$
\text { Delay }_{A C}=\text { Delay }_{A B}+\text { Delay }_{B C}
$$

The circuit delay in VLSI circuits consists of two components:

1. the 50% propagation delay of the driving gates (known as the gate propagation delay)
2. the delay of electrical signals through the wires (known as the interconnect propagation delay)

Gate Delay

Gate Delay $=f\left(T_{i n}, C_{\text {load }}\right)$

The gate load delay is a function of both input slew and the output load

Library-based Delay Model

A pair of two-dimensional delay tables, one for providing the gate delay, the other for the output rise/fall time as a function of the effective load and the input transition time

Second RC-p Model for Load

Using Taylor Expansion around $s=0$

$\hat{Y}_{i n}(s)=\left(C_{1}+C_{2}\right) s-R_{\pi} C_{2}^{2} s^{2}+R_{\pi}^{2} C_{2}^{3} s^{3}+\ldots .$.

$$
C_{1}=A_{1}-\frac{A_{2}{ }^{2}}{A_{3}} \quad R_{\pi}=-\frac{A_{3}{ }^{2}}{A_{2}{ }^{3}} \quad C_{2}=\frac{A_{2}{ }^{2}}{A_{3}}
$$

Second RC-p Model (Cont’d)

$$
\text { Gate } \quad \text { Delay }=f\left(T_{i n}, C_{1}, R_{\pi}, C_{2}\right)
$$

Therefore, it is required to create a four-dimensional table to achieve high accuracy

This is however costly in terms of memory space and computational requirements

Effective Capacitance Approach

The "Effective Capacitance" approach attempts to find a single capacitance value that can be replaced instead of the RC- π load such that both circuits behave similar during transition

Effective Capacitance (Cont’d)

$$
C_{e f f}=C_{1}+k C_{2}
$$

$0<k<1$

Because of the shielding effect of the interconnect resistance , the driver will only "see" a portion of the farend capacitance C_{2}

Prior Work - Macys's Approach

Assumption: If two circuits have the same loads and output transition times, then their effective capacitance are the same.
In other words, the effective capacitance is only a function of the output transition time and the load

Macys's Approach (Cont’d)

Normalized Effective Capacitance Function

$$
\begin{aligned}
& \alpha=\frac{C_{1}}{C_{1}+C_{2}} \\
& \beta=\frac{T_{\text {out }}}{R_{\pi} C_{2}}
\end{aligned} \quad \gamma=\frac{C_{\text {eff }}}{C_{1}+C_{2}} \quad 0 \leq \alpha \leq \gamma \leq 1
$$

Macys's Approach (Cont’d)

1. Compute α from C_{1} and C_{2}
2. Choose an initial value for $C_{\text {eff }}$
3. Compute $t_{\text {output }}$ for the given $C_{\text {eff }}$ and $T_{\text {in }}$
4. Compute β
5. Compute γ from α and β
6. Find new $C_{\text {eff }}$
7. Go to step 3 until $C_{\text {eff }}$ converges

Prior Work - Qian's Approach

Calculate the effective capacitance by equating the currents at the gate output by using:
(a) the driving-point admittance as the load
(b) using a single effective capacitance as the load

Average currents for both loads models are equated until the gate output voltage reaches the 50% threshold

Outline

- Background
- Prior Work
- A New Algorithm for Calculating the Effective Capacitance
- Experimental Results
- Conclusion

A New Effective Capacitance Algorithm

$$
V_{M}(t)=\left\{\begin{array}{cc}
\frac{V_{d d}}{T_{R}}\left(t-B+A e^{-\alpha t} \operatorname{Cosh}(\omega t+\phi)\right) & 0 \leq t \leq T_{R} \\
\frac{V_{d d}}{T_{R}}\left(T_{R}+A^{\prime} e^{-\alpha t} \operatorname{Cosh}\left(\omega t+\dot{\phi}^{\prime}\right)\right) & T_{R}<t
\end{array}\right.
$$

New Algorithm (Cont'd)

Eff_Cap Equation

$$
C_{e f f}=\left(C_{1}+C_{2}\right) \frac{1-e^{-\alpha t} \frac{\operatorname{Cosh}(\omega t+\phi)}{\operatorname{Cosh}(\phi)}}{\left(1-e^{-\frac{t}{R_{d} C_{e f f}}}\right)}
$$

This is an Non-Linear Iterative Equation

A good initial value for $C_{\text {eff }}$ can speed up the procedure to find the answer

Iterative Procedure to Calculate $\mathbf{C}_{\text {eff }}$

1. Start with the initial guess for $C_{\text {eff }}$
2. Obtain $\mathrm{t}_{0-50 \%}$ based on values of $\mathrm{C}_{\text {eff }}$ and T_{R}
3. Obtain \mathbf{R}_{d} based on values of $\mathrm{C}_{\text {eff }}$ and T_{R}
4. Compute a new value of $\mathrm{C}_{\text {eff }}$ from the Eff_Cap equation
5. Find new $\mathrm{t}_{0-50 \%}$ based on the new $\mathrm{C}_{\text {eff }}$ and given TR
6. Compare the values of $\mathrm{t}_{0-50 \%}$ from step 5
7. If not within acceptable tolerance, then return to step 3 until $\mathrm{t}_{0-50 \%}$ converges
8. Report $\mathrm{t}_{50 \%}$ propagation delay and $\mathrm{t}_{0-80 \%}$ from the table

Extension to Complex Gates

To extend the previous algorithm to complex gates, we only need to compute the value of R_{d}

The gate output driver resistance changes as a function of the applied input waveforms

Complex Gates (Cont’d)

First Order (simple) approximation:

Due to the body effect, this value is over-estimated

Extension to Complex Gates,Cont'd

Our approach (using body effect coefficients):

K_{i} is set to 1 if the corresponding input is not switching; Read
K_{i} 's from a lookup table if the correspondent input is switching

Experimental Results

$\begin{gathered} \text { Inverter } \\ \text { Size } \\ (\mathrm{Wp} / \mathrm{Wn}) \\ \mathrm{mm} \end{gathered}$	$\mathrm{C}_{1}(\mathrm{pF}) / \mathrm{R}_{\mathrm{p}}(\mathrm{W}) / \mathrm{C}_{2}(\mathrm{pF})$	HSPIC E 50\% delay (pS)	$\begin{gathered} \text { Estimated } \\ 50 \% \\ \text { delay } \\ \text { (pS) } \end{gathered}$	Error	$\begin{gathered} \text { HSPICE } \\ 80 \% \\ \text { delay } \\ \text { (pS) } \end{gathered}$	$\begin{aligned} & \text { Estimated } \\ & 80 \% \\ & \text { delay (pS) } \end{aligned}$	Error	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Iteration } \\ \mathrm{s} \end{gathered}$
10/5	0.05/410/0.15	66.1	69.0	4.5\%	142.3	140.6	$\begin{aligned} & 1.2 \\ & \% \end{aligned}$	3
40/20	0.1/290/0.25	39.3	41.0	4.3\%	95.3	97.4	$\begin{aligned} & 2.2 \\ & \% \end{aligned}$	3
40/20	0.5/810/0.7	74.0	76.4	3.2\%	136.2	134.5	$\begin{aligned} & 1.3 \\ & \% \end{aligned}$	2
30/15	0.4/1000/0.8	76.3	79.4	4.1 \%	142.5	138.5	$\begin{aligned} & 2.8 \\ & \% \end{aligned}$	1
100/50	0.9/300/1.4	62.7	65.1	3.8\%	121.0	123.1	$\begin{aligned} & 1.7 \\ & \% \end{aligned}$	2
Avg. Error	--	------	-------	4.0\%	---	-----	$\begin{gathered} 1.8 \\ \% \end{gathered}$	-----

Experimental Results

3-input NAND $(\mathrm{Wp} / \mathrm{Wn})$	$\mathrm{C}_{1}(\mathrm{pF}) / \mathrm{R}_{\mathrm{p}}(\mathrm{W}) / \mathrm{C}_{2}(\mathrm{pF})$	HSPICE 50% delay	Estimated 50% delay (pS)	Error	HSPICE 80% delay (pS)	Estimated 80% delay (ps)	Error	Numbe r of Iteratio
$20 / 60$	$0.4 / 1000 / 0.8$	34.7 p	36.4 p	4.9%	42.1 p	43.2 p	2.6%	ns 2
$40 / 120$	$0.5 / 510 / 1.2$	26.4 p	27.1 p	2.7%	78.1 p	79.5 p	1.8%	2
Avg. Error	$-\ldots----$	$-\ldots---$	$-\ldots---$	3.6%	$\ldots----$	------	2.2%	$-\ldots----$

The topmost transistor in the stack is switching

$\begin{gathered} \text { 3-input } \\ \text { NAND } \\ (\mathrm{Wp} / \mathrm{Wn}) \end{gathered}$	$\mathrm{C}_{1}(\mathrm{pF}) / \mathrm{R}_{\mathrm{p}}(\mathrm{W}) / \mathrm{C}_{2}(\mathrm{pF})$	$\begin{aligned} & \text { HSPICE } \\ & 50 \% \\ & \text { delay } \end{aligned}$	Estimated 50\% delay (pS)	Error	HSPICE 80% delay (pS)	$\begin{aligned} & \text { Estimated } \\ & 80 \% \\ & \text { delay } \end{aligned}$	Error	$\begin{aligned} & \text { Numbe } \\ & \mathrm{r} \text { of } \\ & \text { Iterat. } \end{aligned}$
20/60	0.4/1000/0.8	64.7 p	67p	3.6\%	64.4p	64.8p	0.6\%	3
40/120	0.5/510/1.2	54.1p	55.5p	2.6\%	83.5p	84.5p	1.2\%	2
Avg. Error	-------	-----	-------	3.1\%	-------	----	0.9\%	-----

All three transistors in the stack are switching

