Fine-Grained Dynamic Voltage and Frequency
Scaling for Precise Energy and Performance
Trade-off based on the Ratio of Off-chip
Access to On-chip Computation Times

Kihwan Choi
Ramakrishna Soma

Massoud Pedram

University of Southern California
Dept. of EE

Outline

e Introduction

e XScale’s Performance Monitoring Unit (PMU)
e Proposed Fine-grained DVFS Policy

e Experimental Results

e Conclusion

Energy and Performance Trade-off

e Dynamic Voltage and Frequency Scaling (DVFS)
< Provide just enough power to meet the performance requirements

e The execution trace of an application program consists of
CPU and memory instructions

e On a memory miss, the CPU has to stall until the external
memory access is completed

< If DVES is applied during the CPU stall times, then the CPU energy is
saved with little performance loss

2 l\élltzegory—bound applications exhibit lower performance penalty with
CPU work

B memory work

f - f
Ta=10 | e =15 (50%)
1= | 2| T',=18 (80%)
T.=10 | “ T' =12 (20%)
T

T
@ fmax @ fmax/ 2

Motivation

e Performance degradation of the target system (i.e., the Apollo
Testbed Il) for different applications at various frequencies

e For a given performance loss target (say 20%), higher CPU
energy saving is possible for memory-intensive applications
because the CPU frequency can be scaled more aggressively

O fgrep
M gsort
@ gzip

Ddjpeg

Performance Loss [%]

733 666 600 533 466 400
Frequency [MHz]

The Program Execution Time

e The amount of CPU and memory workload for an application
program must be determined

e Execution time of a program is the sum of the On-chip (CPU
work) and the Off-chip Latency (memory work)
@ T=Toehin*t T

onchip offchip

® Toncnip - Varies with the CPU frequency
< Stalls due to data dependency
< Cache hit rate
< TLB hit rate, ...

® Tosicnip - IS does not vary with the CPU frequency

< Access latency to external memory such as the SDRAM or the frame
buffer memory through the PCI is a function of the external bus
frequency only

Calculating the Program Execution Time

e T=T +T

onchip offchip

n m

Zcplénchip zCPléﬁchip
T — =1 = j=1

onchip — f
cpu

n : number of onchip instructions m : number of offchip events

CPllycnip : CPU clocks per instruction CPliyenip - Memory clocks per offchip event

: CPU clock frequency (variable) f : memory clock frequency (fixed)

cpu mem

e When all parameters are known and the target performance
loss factor (PF,.) is specified, then CPU frequency may be
calculated as:

PF. =0

loss target —

— n'CPlonchip PF

f1 = loss T arget
arget P m C P P m C P
(l +PF,) B I + Floss B Ioffchip =] =

loss onchip !
f loss arget
(NEN mem T 1

offchip target

Performance Monitoring Unit (PMU)

e PMU on the XScale processor chip can report up to 20
different dynamic events during execution of a program
< Cache hit/miss counts
¢ TLB hit/miss counts
< No. of external memory accesses
» Total no. of instructions being executed
¢ Branch misprediction counts

e However, only two events can be monitored and reported at
any given time

e For DVFS, we use PMU to generate statistics for
< Total no. of instructions being executed (INSTR)
< No. of external memory accesses (MEM)

e We also record the no. of clock cycles from the beginning of
the program execution (CCNT)

Plot of CPI vs. MPI

e PMU is read at every OS quantum (~50msec)

e We define MPI as the ratio of memory access count to the
total instruction count
2 CPI&¥9 = CCNT / INSTR, during a quantum
< MPI&¥9 = MEM / INSTR, during a quantum

e Plots of CPI2v9 vs. MPI2vd for two different applications and
various clock frequencies

333MHz

Regression Equation Modeling

e A linear regression equation can be generated for
each CPU clock frequency

f,>f,>f,
fy

CPIavg f,

fa CPI2v9 = h(f)*MPI2¥d + ¢

t-N+1 t-N+

NTY, %) =(2 %) T)
b = = t=N+1 i=tth+1 = !
N %)= %)

tN+

MPIavg

N : No. of regression points, e.g., 25)]
X; - MPI2vg for the i point i —pE=
y; : CPI12 for the it" point N

How the PMU Data is Used in DVFS

e Target frequency for a given PF, .

O known

n CPIonchip unknown

) .CPI P)M CPl

f =
target (1+ PE

733 MHz given

loss onchip

100 MHz or 33 MHz

e The four unknown parameters (circled in red) must be
calculated from CCNT and the two reported values by the
PMU (INSTR & MEM)

< n (no. of executed instructions) < INSTR

< m (no. of offchip events) < MEM

@ CPlonehip < Average onchip CPI ?
@ CPlyfichip < Average offchip CPI ?

Calculating CPI

onchip

e Notice that CPI,,., denotes the CPI value without the
offchip accesses; §o it is equal to the y intercept of the
CPI vs. MPI plot

fi>f,>1, ¢ CPIonchip =C

CPlavg =N+ =N+
Z Yi Z X
C =i —pO=

CPIl_ ni < N N
onchip RN t-N+1 t-NH tN+

N'lﬂz X Sﬁ)_(z Xi)mz yi)

b= t=N+1 t=N+

i NI %) =(2 %)

Calculating CPlstichip

e Itis difficult to get CPl ., directly from the PMU events

% CPlygcnip, @ccounts for both the SDRAM access (100MHz) and the
PCI device access (33MHz) in the Apollo Testbed Il system

< MEM captures both offchip events
e Recall that CPl ., is only needed to calculate Tgepi

e \We can calculate Toﬁchip
<& T:T +T :CCNT/f

onchip offchip cpu
o T

= CCNT/y, - T

directly as shown below

offchip onchip

Prediction Error Adjustment (I)

e Error adjustment

, quantum sequence

 ET at f

; expected ET with
a given PF,

— ;actual ET
T St .1 (slack generation)

ty

t-1 t-1
p Tact
) 1 ET : Execution time
'+ Texp - Tact - Tact
t T act U+ St Texpk= Tke (1+PFoss)
(k=1t1,t, t+1)
t- l— t+1 t t-1 t+1 t t-1
St e p + Texp + Texp - Tact - Tact - Tact
=T —T. wlygt

exp act

Prediction Error Adjustment (II)

e Target frequency selection
< without adjustment

ft+1 - max
1+ PF|OSS I:El-'-ﬁt [Eimax]}
cpu

< with adjustment

f1+1 - fmax

max SI max \—|
1+PF, [El B [éf[j T [é J|
loss — onchip 4

Fine-grained DVFS Policy

e Scaling is performed at every OS quantum(~50msec)

e Optimal frequency for the next quantum is chosen based on
the statistics of the previous quanta

oT and T ynip @re calculated as :

onchip

m

n i j
gcplonchip n E([:Plonchip ;CPloffchip
TOHChiP) fi - fi TOffChip y fi =T _Tonchip

cpu cpu mem

e Frequency for the next quantum (t+1), f *1, is calculated as:

t+l — fmax

t 1:max‘ Sl
1+ PI:Ioss 1+ﬁ T +PF Erl

loss onchip

Implementation (1)

e Offchip Latency-driven DVFS (OL-DVFES)
< Software architecture

external PF,. input
(ex, battery status or user request)

Kernel space +
“proc” interface module

¢

policy module

Linux
scheduler PMU access DVFS
module module

A |
v v

XScale processor

Implementation (1l)

e A voltage is mapped to each CPU frequency

e Voltage control circuitry is on-board

e Power measurement with DAQ (Data Acquisition)

CPU Freq. vs. Volt. Relation

Frequency | Voltage
(MHz) V)
333 0.91
400
466
533

1.05
1.12
1.19
1.26
1.49

Data Acquisition system

Sample
40kHz

Operating
Voltage —»
of DUT

ity

Sy

r
[

Experimental Results (1)

e Power consumption vs. performance

degradation
without OL-DVFS

2500

with OL-DVFS

avg. power : 789.5mW
| 9.968pseb |||]

TS e L "' il

IN)
=]
s]
s]

1500

1000

Power consumption [mW]
o
o
o

0zip, @733MHz

2500

gzip, with 10% PF,
avg. power : 338.7mW

IN)
=]
s]
=]

(52.1% energy saving)

1500 1]0806 sec (11.6% PF,ss)

1000

Power consumption [mW]
a
o
o

Time [sec]

0 0.2 0.4 0.6 0.8 1

loss

12 0 0.2 04 0.6 0.8 1

Time [sec]

Actual Performance Loss [%)]

Experimental Results (1l)

e Comparison of the actual PF, ., with the target
performance loss

®©
o

Target Performace Loss Target Performace Loss
m5% L r- = O 5%

B 10% m10%
O15% | - 015%
020%

-~
o

=}
=}

a
=}

Energy Saving [%]
B
o

(3}

o

crc djpeg gzip math fgrep gsort crc djpeg gzip math fgrep gsort

Conclusions

e A fine-grained DVFS technique was proposed
and implemented in XScale-based platform

e From actual measurements

< For memory-bound programs, more than 70%
CPU energy savings is achieved with 12% of
performance degradation

< For CPU-bound programs, 15~60% CPU energy
savings is achieved at the cost of a 5~20%
performance penalty

e Future work will focus on extending this
technique to a PXA255-based embedded
system

10

