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Energy and Performance Trade-off

e Dynamic Voltage and Frequency Scaling (DVFS)
< Provide just enough power to meet the performance requirements

e The execution trace of an application program consists of
CPU and memory instructions

e On a memory miss, the CPU has to stall until the external
memory access is completed

< If DVES is applied during the CPU stall times, then the CPU energy is
saved with little performance loss

2 l\élltzegory—bound applications exhibit lower performance penalty with
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Motivation

e Performance degradation of the target system (i.e., the Apollo
Testbed Il) for different applications at various frequencies

e For a given performance loss target (say 20%), higher CPU
energy saving is possible for memory-intensive applications
because the CPU frequency can be scaled more aggressively
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The Program Execution Time

e The amount of CPU and memory workload for an application
program must be determined

e Execution time of a program is the sum of the On-chip (CPU
work) and the Off-chip Latency (memory work)
@ T=Toehin*t T
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® Toncnip - Varies with the CPU frequency
< Stalls due to data dependency
< Cache hit rate
< TLB hit rate, ...

® Tosicnip - IS does not vary with the CPU frequency

< Access latency to external memory such as the SDRAM or the frame
buffer memory through the PCI is a function of the external bus
frequency only

Calculating the Program Execution Time

e T=T +T
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n : number of onchip instructions  m : number of offchip events

CPllycnip : CPU clocks per instruction CPliyenip - Memory clocks per offchip event

: CPU clock frequency (variable) f : memory clock frequency (fixed)
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e When all parameters are known and the target performance
loss factor (PF,.) is specified, then CPU frequency may be
calculated as:
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Performance Monitoring Unit (PMU)

e PMU on the XScale processor chip can report up to 20
different dynamic events during execution of a program
< Cache hit/miss counts
¢ TLB hit/miss counts
< No. of external memory accesses
» Total no. of instructions being executed
¢ Branch misprediction counts

e However, only two events can be monitored and reported at
any given time

e For DVFS, we use PMU to generate statistics for
< Total no. of instructions being executed (INSTR)
< No. of external memory accesses (MEM)

e We also record the no. of clock cycles from the beginning of
the program execution (CCNT)

Plot of CPI vs. MPI

e PMU is read at every OS quantum (~50msec)

e We define MPI as the ratio of memory access count to the
total instruction count
2 CPI&¥9 = CCNT / INSTR, during a quantum
< MPI&¥9 = MEM / INSTR, during a quantum

e Plots of CPI2v9 vs. MPI2vd for two different applications and
various clock frequencies

333MHz




Regression Equation Modeling

e A linear regression equation can be generated for
each CPU clock frequency
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How the PMU Data is Used in DVFS

e Target frequency for a given PF, .
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100 MHz or 33 MHz

e The four unknown parameters (circled in red) must be
calculated from CCNT and the two reported values by the
PMU (INSTR & MEM)

< n (no. of executed instructions) < INSTR

< m (no. of offchip events) < MEM

@ CPlonehip < Average onchip CPI ?
@ CPlyfichip < Average offchip CPI ?




Calculating CPI

onchip

e Notice that CPI,,., denotes the CPI value without the
offchip accesses; §o it is equal to the y intercept of the
CPI vs. MPI plot
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Calculating CPlstichip

e Itis difficult to get CPl ., directly from the PMU events

% CPlygcnip, @ccounts for both the SDRAM access (100MHz) and the
PCI device access (33MHz) in the Apollo Testbed Il system

< MEM captures both offchip events
e Recall that CPl ., is only needed to calculate Tgepi

e \We can calculate Toﬁchip
<& T:T +T :CCNT/f
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directly as shown below
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Prediction Error Adjustment (I)

e Error adjustment

, quantum sequence
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Prediction Error Adjustment (II)

e Target frequency selection
< without adjustment
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Fine-grained DVFS Policy

e Scaling is performed at every OS quantum(~50msec)

e Optimal frequency for the next quantum is chosen based on
the statistics of the previous quanta

oT and T ynip @re calculated as :
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e Frequency for the next quantum (t+1), f *1, is calculated as:
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Implementation (1)

e Offchip Latency-driven DVFS (OL-DVFES)
< Software architecture

external PF,. input
(ex, battery status or user request)

Kernel space +
“proc” interface module

¢

policy module

Linux
scheduler PMU access DVFS
module module
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Implementation (1l)

e A voltage is mapped to each CPU frequency

e Voltage control circuitry is on-board

e Power measurement with DAQ (Data Acquisition)

CPU Freq. vs. Volt. Relation
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Experimental Results (1)

e Power consumption vs. performance

degradation
without OL-DVFS
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Actual Performance Loss [%)]

Experimental Results (1l)

e Comparison of the actual PF, ., with the target
performance loss
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Conclusions

e A fine-grained DVFS technique was proposed
and implemented in XScale-based platform

e From actual measurements

< For memory-bound programs, more than 70%
CPU energy savings is achieved with 12% of
performance degradation

< For CPU-bound programs, 15~60% CPU energy
savings is achieved at the cost of a 5~20%
performance penalty

e Future work will focus on extending this
technique to a PXA255-based embedded
system
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