
1

Fine-Grained Dynamic Voltage and Frequency
Scaling for Precise Energy and Performance

Trade-off based on the Ratio of Off-chip
Access to On-chip Computation Times

Kihwan Choi

Ramakrishna Soma

Massoud Pedram

University of Southern California

Dept. of EE

Outline

! Introduction

! XScale’s Performance Monitoring Unit (PMU)

! Proposed Fine-grained DVFS Policy

! Experimental Results

! Conclusion

2

Energy and Performance Trade-off
! Dynamic Voltage and Frequency Scaling (DVFS)

" Provide just enough power to meet the performance requirements

! The execution trace of an application program consists of
CPU and memory instructions

! On a memory miss, the CPU has to stall until the external
memory access is completed
" If DVFS is applied during the CPU stall times, then the CPU energy is

saved with little performance loss
" Memory-bound applications exhibit lower performance penalty with

DFS

5 5

2 8

8 2

T

f

@ fmax
@ fmax / 2

10 5

4 8

16 2

f

T

a.

b.

c.

Ta=10

Tb=10

Tc=10

T’a=15 (50%)

T’b=18 (80%)

T’c=12 (20%)

CPU work
memory work

Motivation
! Performance degradation of the target system (i.e., the Apollo

Testbed II) for different applications at various frequencies

! For a given performance loss target (say 20%), higher CPU
energy saving is possible for memory-intensive applications
because the CPU frequency can be scaled more aggressively

0

20

40

60

80

100

120

733 666 600 533 466 400 333

Frequency [MHz]

P
er

fo
rm

an
ce

 L
o

ss
 [

%
]

fgrep
qsort
gzip

djpeg
crc

3

The Program Execution Time

! The amount of CPU and memory workload for an application
program must be determined

! Execution time of a program is the sum of the On-chip (CPU
work) and the Off-chip Latency (memory work)
" T = Tonchip + Toffchip

! Tonchip : varies with the CPU frequency
" Stalls due to data dependency
" Cache hit rate
" TLB hit rate, …

! Toffchip : is does not vary with the CPU frequency
" Access latency to external memory such as the SDRAM or the frame

buffer memory through the PCI is a function of the external bus
frequency only

Calculating the Program Execution Time

! T = Tonchip + Toffchip

! When all parameters are known and the target performance
loss factor (PFloss) is specified, then CPU frequency may be
calculated as:

==
∑

1

n
i
onchip

i
onchip

cpu

CPI
T

f
==
∑

1

m
j

offchip
j

offchip
mem

CPI

T
f

n : number of onchip instructions
CPIionchip : CPU clocks per instruction
fcpu : CPU clock frequency (variable)

m : number of offchip events
CPIioffchip : memory clocks per offchip event
fmem : memory clock frequency (fixed)

arg

max

.

(1) . .
onchip

t et
loss onchip loss offchip

mem

n CPI
f

PF n CPI PF mCPI

f f

=
+ ⋅ ⋅

+

= ⇒ =

↑ ⇒ ↓

↓ ⇒ ↑

↑ ⇒ ↓

arg max

arg

arg

arg

0

loss t et

loss t et

loss t et

offchip t et

PF f f

PF f

PF f

T f

4

Performance Monitoring Unit (PMU)

! PMU on the XScale processor chip can report up to 20
different dynamic events during execution of a program
" Cache hit/miss counts
" TLB hit/miss counts
" No. of external memory accesses
" Total no. of instructions being executed
" Branch misprediction counts

! However, only two events can be monitored and reported at
any given time

! For DVFS, we use PMU to generate statistics for
" Total no. of instructions being executed (INSTR)
" No. of external memory accesses (MEM)

! We also record the no. of clock cycles from the beginning of
the program execution (CCNT)

Plot of CPI vs. MPI
! PMU is read at every OS quantum (~50msec)

! We define MPI as the ratio of memory access count to the
total instruction count
" CPIavg = CCNT / INSTR, during a quantum
" MPIavg = MEM / INSTR, during a quantum

! Plots of CPIavg vs. MPIavg for two different applications and
various clock frequencies

0

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4

MPIavg

C
P

Iav
g

fgrep

733MHz

333MHz

0

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4

MPIavg

C
P

Iav
g

gzip

333MHz

733MHz

5

Regression Equation Modeling

! A linear regression equation can be generated for
each CPU clock frequency

− + − + − +

= = =
− + − +

= =

− + − +

= =

⋅ ⋅ − ⋅
=

⋅ −

= − ⋅

∑ ∑ ∑

∑ ∑

∑ ∑

1 1 1

1 1
2 2

1

1 1

() () ()
,

() ()

t N t N t N

i i i i
i t i t i t

t N t N

i i
i t i

t N t N

i i
i t i t

N x y x y
b

N x x

y x
c b

N N

MPIavg

CPIavg

CPIavg = b(f)*MPIavg + c

N : No. of regression points, e.g., 25
xi : MPIavg for the ith point
yi : CPIavg for the ith point

f1
f2
f3

f1 > f2 > f3

How the PMU Data is Used in DVFS

! Target frequency for a given PFloss

! The four unknown parameters (circled in red) must be
calculated from CCNT and the two reported values by the
PMU (INSTR & MEM)
" n (no. of executed instructions) # INSTR
" m (no. of offchip events) # MEM
" CPIonchip # Average onchip CPI ?
" CPIoffchip # Average offchip CPI ?

arg

max

.

(1) . .
onchip

t et
loss onchip loss offchip

mem

n CPI
f

PF n CPI PF m CPI

f f

≈
+ ⋅ ⋅

+

known

unknown

100 MHz or 33 MHz
733 MHz given

6

Calculating CPIonchip

! Notice that CPIonchip denotes the CPI value without the
offchip accesses; So it is equal to the y intercept of the
CPI vs. MPI plot

− + − +

= =

− + − + − +

= = =
− + − +

= =

= − ⋅

⋅ ⋅ − ⋅
=

⋅ −

∑ ∑

∑ ∑ ∑

∑ ∑

1 1

1 1 1

1 1
2 2

1

() () ()
,

() ()

t N t N

i i
i t i t

t N t N t N

i i i i
i t i t i t

t N t N

i i
i t i

y x
c b

N N

N x y x y
b

N x x

CPIonchip = c

MPIavg

CPIavg

CPIonchip

f1
f2
f3

f1 > f2 > f3

Calculating CPIoffchip

! It is difficult to get CPIoffchip directly from the PMU events
" CPIoffchip accounts for both the SDRAM access (100MHz) and the

PCI device access (33MHz) in the Apollo Testbed II system
" MEM captures both offchip events

! Recall that CPIoffchip is only needed to calculate Toffchip

! We can calculate Toffchip directly as shown below
" T = Tonchip + Toffchip = CCNT/ fcpu

" Toffchip = CCNT/fcpu - Tonchip

7

Prediction Error Adjustment (I)
! Error adjustment

T t-1 T t T t+1

Texp
t-1 Texp

t Texp
t+1

Tact
t-1 Tact

t Tact
t+1

St-1 St St+1

St-1 = Texp
t-1 – Tact

t-1

St = Tex[
t + Texp

t-1 - Tact
t – Tact

t-1

= Texp
t - Tact

t + St-1

St+1 = Texp
t+1 + Texp

t + Texp
t-1 – Tact

t+1 - Tact
t – Tact

t-1

= Texp
t+1 – Tact

t+1 + St

q t-1 q t q t+1

; ET at fmax

; expected ET with
a given PFloss

; actual ET
(slack generation)

t1 t2 t3

ET : Execution time

Texp
k= T k • (1+PFloss)
(k = t-1, t, t+1)

; quantum sequence

T t-1 T t T t+1

Texp
t-1 Texp

t Texp
t+1

Tact
t-1 Tact

t Tact
t+1

St-1 St St+1

St-1 = Texp
t-1 – Tact

t-1

St = Tex[
t + Texp

t-1 - Tact
t – Tact

t-1

= Texp
t - Tact

t + St-1

St+1 = Texp
t+1 + Texp

t + Texp
t-1 – Tact

t+1 - Tact
t – Tact

t-1

= Texp
t+1 – Tact

t+1 + St

q t-1 q t q t+1

; ET at fmax

; expected ET with
a given PFloss

; actual ET
(slack generation)

t1 t2 t3

ET : Execution time

Texp
k= T k • (1+PFloss)
(k = t-1, t, t+1)

; quantum sequence

Prediction Error Adjustment (II)

! Target frequency selection
" without adjustment

" with adjustment

β

+ =
    + ⋅ + ⋅ + ⋅    ⋅     

1 max

max max1 1

t

t
t

loss t t t
loss onchip

f
f

f fS
PF

f PF T f

β

+ =
  

+ ⋅ + ⋅      

1 max

max

1

1

t

t
loss

cpu

f
f

f
PF

f

β !

t
offchipt

t
onchip

T
T

8

Fine-grained DVFS Policy

! Scaling is performed at every OS quantum(~50msec)

! Optimal frequency for the next quantum is chosen based on
the statistics of the previous quanta

! Tonchip and Toffchip are calculated as :

! Frequency for the next quantum (t+1), f t+1, is calculated as:

= ⋅
= =
∑

1

n
i
onchip

onchipi
onchip

cpu cpu

CPI n CPI
T

f f
== = −
∑

1

m
j

offchip
j

offchip onchip
mem

CPI
T T T

f

β

+ =
    + ⋅ + ⋅ + ⋅    ⋅     

1 max

max max1 1

t

t
t

loss t t t
loss onchip

f
f

f fS
PF

f PF T f

Implementation (I)

“proc” interface module

Linux
scheduler

policy module

PMU access
module

DVFS
module

XScale processor

Kernel space

external PFloss input
(ex, battery status or user request)

“proc” interface module

Linux
scheduler

policy module

PMU access
module

DVFS
module

XScale processor

Kernel space

external PFloss input
(ex, battery status or user request)

! Offchip Latency-driven DVFS (OL-DVFS)
" Software architecture

9

DUT

ResistorPower split

DUT

ResistorPower split

DUT

V1

∆V = VDUT – V1
I = ∆V / R
P = I • V1

Sample
40kHz

I

R

∆V

VDUT

Operating
Voltage
of DUT

DUT

V1

∆V = VDUT – V1
I = ∆V / R
P = I • V1

Sample
40kHz

I

R

∆V

VDUT

Operating
Voltage
of DUT

Data Acquisition system

333

400

466

533

600

666

733

Frequency
(MHz)

Voltage
(V)

0.91

0.99

1.05

1.12

1.19

1.26

1.49

CPU Freq. vs. Volt. Relation

Implementation (II)

! A voltage is mapped to each CPU frequency

! Voltage control circuitry is on-board

! Power measurement with DAQ (Data Acquisition)

Experimental Results (I)

with OL-DVFSwithout OL-DVFS

0

500

1000

1500

2000

2500

0 0.2 0.4 0.6 0.8 1 1.2

Time [sec]

P
o

w
er

 c
o

n
su

m
p

ti
o

n
 [

m
W

]

gzip, @733MHz

0.9684 sec
avg. power : 789.5mW

0

500

1000

1500

0.4 0.41 0.42

0

500

1000

1500

2000

2500

0 0.2 0.4 0.6 0.8 1 1.2

Time [sec]

P
o

w
er

 c
o

n
su

m
p

ti
o

n
 [

m
W

]

gzip, @733MHz

0.9684 sec
avg. power : 789.5mW

0

500

1000

1500

0.4 0.41 0.42

0

500

1000

1500

2000

2500

0 0.2 0.4 0.6 0.8 1 1.2

Time [sec]

P
o

w
er

 c
o

n
su

m
p

ti
o

n
 [

m
W

]

gzip, with 10% PFloss

1.0806 sec (11.6% PFloss)

avg. power : 338.7mW
(52.1% energy saving)

0

500

1000

1500

0.4 0.41 0.42

0

500

1000

1500

2000

2500

0 0.2 0.4 0.6 0.8 1 1.2

Time [sec]

P
o

w
er

 c
o

n
su

m
p

ti
o

n
 [

m
W

]

gzip, with 10% PFloss

1.0806 sec (11.6% PFloss)

avg. power : 338.7mW
(52.1% energy saving)

0

500

1000

1500

0.4 0.41 0.42

! Power consumption vs. performance
degradation

10

Experimental Results (II)

0

5

10

15

20

25

30

bf crc djpeg gzip math fgrep qsort

A
ct

u
al

 P
er

fo
rm

an
ce

 L
o

ss
 [

%
]

5%

10%

15%

20%

Target Performace Loss

0

10

20

30

40

50

60

70

80

bf crc djpeg gzip math fgrep qsort
E

n
er

g
y

S
av

in
g

 [
%

]

5%

10%
15%

20%

Target Performace Loss

! Comparison of the actual PFloss with the target
performance loss

Conclusions
! A fine-grained DVFS technique was proposed

and implemented in XScale-based platform

! From actual measurements
" For memory-bound programs, more than 70%

CPU energy savings is achieved with 12% of
performance degradation

" For CPU-bound programs, 15~60% CPU energy
savings is achieved at the cost of a 5~20%
performance penalty

! Future work will focus on extending this
technique to a PXA255-based embedded
system

