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Abstract - This paper presents an effective and robust
technique for compacting a large sequence of input vectors into a
much smaller input sequence so as to reduce the circuit/gate level
simulation time by orders of magnitude and maintain the accuracy
of the power estimates. In particular, this paper introduces and
characterizes a family of dynamic Markov trees that can model
complex spatiotemporal correlations which occur during power
estimation both in combinational and sequential circuits. As the
results demonstrate, large compaction ratios of 1-2 orders of
magnitude can be obtained without significant loss (less than 5%
on average) in the accuracy of power estimates.
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I. INTRODUCTION
CAD tools have played a significant role in the efficient

design of the high-performance digital systems. In the past, time
and area were the primary concerns of the CAD community
during the optimization phase. With the growing need for low-
power electronic circuits and systems, power analysis and low-
power synthesis have become crucial tasks that must also be
addressed.

Power estimation is in general a difficult problem; the key
task in this process is the accurate and fast estimation of average
switching activity. To date, both simulative [1]-[4] and
nonsimulative approaches [5]-[10] have been tried, each one
having its own advantages and limitations [11]. More
specifically, general simulation techniques provide sufficient
accuracy, but at high computational cost; it is simply expensive
to simulate thousands of vectors. On the other hand,
nonsimulative approaches (best represented by probabilistic
power estimation techniques) are in general faster, but less
accurate than those based on simulation; usually, the input
correlations and the reconvergent fan-out in the target circuit
make things very complicated and simplifying assumptions (like
input independence) become mandatory.

As a conclusion, a number of issues appear to be important
for power estimation and low-power synthesis. The input
statistics which must be properly captured and the length of the
input sequences which must be applied are two such issues.
Generating a minimal-length sequence of input vectors that
satisfies these statistics in not trivial. The reason is the elaborate
set of input statistics that must be preserved or reproduced during
sequence generation for use by power simulators. One such
attempt is [13] where authors use deterministic FSMs to model
user-specified input sequences. Since the number of states in the
FSM is equal to the length of the sequence to be modeled, the
ability to characterize anything else but short input sequences is
limited. A more elaborate and effective technique was presented
in [14] where, based on stochastic sequential machines, the
authors succeed in compacting large sequences without
significant loss in accuracy. However, in the present research, the
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limitations of that approach are pointed out and overcome by the
proposed technique.

The present paper improves the-state-of the art by providing
an original solution for vector compaction problem which
potentially reduces the gap between simulative and
nonsimulative approaches. Having an initial sequence (assumed
representative for some target circuit), we target lossy
compression [15], that is the process of transforming an input
sequence into a smaller one, such that the new body of data
represents a good approximation as far as total power
consumption is concerned.

The foundation of our approach is probabilistic in nature; it
relies on adaptive (dynamic) modeling of binary input streams as
first-order Markov sources of information and is applicable to
combinational and, under some circumstances, to sequential
circuits. The adaptive modeling technique itself (best known as
Dynamic Markov Chain or DMC modeling) was introduced very
recently in the literature on data compression as a candidate to
solve various data compression problems. However, the original
model introduced in [17] is not completely satisfactory for our
purpose. In this paper, we thus extend the initial formulation to
manage not only correlations among adjacent bits that belong to
the same input vector, but also correlations between successive
input patterns.

As demonstrated and supported by practical evidence, this
new framework is extremely effective in power estimation. The
basic idea is illustrated in Fig.1. To evaluate the total power
consumption of a target circuit for a given input sequence L0
(Fig.1a), we derive first the Markov model of the input sequence
through a one-pass traversal technique and after that, having this
compact representation, we generate a much shorter sequence L,
equivalent with L0, which can be used with any available
simulator to derive accurate power estimates (Fig.1b).

Fig.1: Data compaction for power estimation

We point out here that the present approach can be used
without any difficulty to generate benchmark data for power
estimation, that is, input sequences with different lengths that
satisfy a set of user-prescribed characteristics in terms of word-
level transition or conditional probabilities.

To conclude, both simulation-based approaches and
probabilistic techniques for power estimation may benefit from
this research. The issues brought into attention in this paper are
new and represent an important step toward reducing the gap
between the simulative and probabilistic techniques commonly
used in power estimation. Finally, the concept of DMC modeling
itself may find useful applications in other CAD fields.

The paper is organized as follows: Section II reviews the
basic concepts of DMC modeling technique. Section III
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formalizes the power-oriented vector compaction problem and
discusses parameters which makes this approach effective in
practice. Section IV presents a DMC-based procedure for vector
compaction. In sections V and VI, we give some practical
considerations and experimental results, respectively. Finally, we
conclude by summarizing our main contribution.

II. BACKGROUND ON DYNAMIC MARKOV MODELS

Without loss of generality, in what follows we restrict
ourselves to finite binary strings, that is, finite sequences
consisting only of 0’s and 1’s. The set of events of interest is the
set S of all finite binary sequences on k bits. A particular sequence
S1 in S consists of vectors v1, v2,..., vn (which may be distinct or
not), each having a positive occurrence probability. Indices 1,
2,..., n represent the discrete time steps when a particular vector is
applied to a target circuit. Imposing a total ordering among bits,
such a sequence may be conveniently viewed as a binary tree
(called DMT0 from Dynamic Markov Tree of order zero) where
nodes at level j correspond to bit j (1 ≤ j ≤ k) in the original
sequence; each edge that emerges from a node is labelled with a
positive count (and therefore with a positive probability) that
indicates how many times the substring from the root to that
particular node, occurred in the original sequence. For clarity, let
us consider the following example.
Example 1: For the following 4-bit sequence consisting of 8 non-
distinct vectors: (v1, v2, v3, v4, v5, v6, v7, v8) = (0000, 0001, 1001,
1100, 1001, 1100, 1001, 1100) the construction of the tree DMT0
is shown step-by-step in Fig.2a.

Fig.2: The tree DMT0 for the sequence in Example 1

Obviously, the whole Markov tree that models this sequence

must have four levels because the original sequence is a 4-bit
sequence. Without loss of generality, we assume a left-to-right
order among bits that is, the leftmost bit in any vector v1 to v8 is
considered as being bit number one (and consequently
represented at level one in DMT0 as shown in Fig.2a), the next bit
is considered as being bit number two and so on. Every time a
vector is completely scanned (this corresponds to reaching the
level four in the tree), we come back to the root and start again
with the next vector in the sequence. While the input sequence is
scanned, the actual counts on the edges are dynamically updated
such that, for this particular example, they finally become as
indicated in Fig.2b.

The Markov tree in Fig.2b contains in a compact form all the
spatial information about the original sequence v1, v2,..., v8. We
point out that this sparse structure is possible only by using the
dynamic (adaptive) fashion of growing the tree DMT0 just
illustrated. Another approach would have been to consider a static
binary tree capable to model any 4-bit sequence and just to update
the counts on the edges while scanning the original sequence. By
doing so, we would end up with the obvious disadvantage of
having 15 instead of 9 nodes in the structure for the same amount
of information; this reason alone is sufficient for considering from
now on only dynamically grown models.
Definition 1. We define the information source, to be the pair
<S,p>, where p is a function from S into [0,1] satisfying the
condition:

                                                                           (1)

for all v in S, where vx represents the event corresponding to the
joint occurence of the strings v and x.

The above condition, simply states that the sum of the counts
attached to the immediate successors of node v equals its own
value p(v). As we can easily see in Fig.2, the condition (1) is
satisfied at every node in this representation1. In addition, based
on the counts of the terminal edges, we may easily compute the
probability of occurrence for a particular vector in the sequence.
For instance, the probability of occurrence for string ‘1001’ is 3/8
(because the count on the terminal edge that corresponds to
‘1001’ is 3 and the length of the sequence is 8) while the
probability of the string ‘1111’ is zero, ‘1111’ being a ‘forbidden’
vector for this particular sequence.

III. POWER-ORIENTED DATA COMPACTION

A. Problem Formulation
Input pattern dependencies (that is, spatial and temporal

correlations) have a dramatic impact on power dissipation
estimates. Spatial correlations refer to the relationship among
adjacent bits belonging to the same vector, whereas temporal
correlations are dependencies between successive input patterns.
If one ignores the input statistics (which give the actual
correlations among the primary inputs), power estimation results
can be seriously impaired [7],[11],[16]. In these references, the
subject of spatiotemporal correlations was studied from a circuit
perspective, that is, the authors consider the impact of the
reconvergent fanout on the spatial dependence of internal lines in
the circuit. The present paper focuses on the input problem, in the
sense that it tries to find, independently of the target circuit, a
good approximation of the input sequence. When applied to the
target circuit, this new sequence, must produce the same total
power consumption as the initial, but much longer, sequence. Our

1This is actually similar to Kirchoff’s law for currents.
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compaction procedure is completely independent of the target
circuit and uses only information about the input sequence. As a
consequence, in the present paper, we consider only
spatiotemporal correlations at the primary inputs.

For power estimation purposes, it is therefore critical to
distinguish between input sequences which exhibit the same
signal probabilities on different bit lines, yet showing very
different spatial and temporal correlations, mostly if we are
interested in node-by-node power estimation.

Having these issues in mind, the vector compaction problem
can be formulated as follows: for a k-bit sequence of length n
(consisting of vectors v1,v2,...,vn), find another sequence of length
m < n (consisting of the subset u1,u2,...,um of the initial sequence),
such that the average transition probability on the primary inputs
is preserved wordwise. More formally, for any generic input v and
u (seen as collections of bits) in the original and in the compacted
sequence, respectively, the following holds:

                    (2)

In relation (2), v-, v+ (u-, u+) denote the current and the next
vector, respectively, in the original (compacted) sequence and X,
Y are any two patterns that appear in the initial sequence. This
condition simply requires that the joint transition probability for
any group of bits is preserved within a given level of error, for
any two consecutive time steps.

B. A DMC-based Approach
An attempt to solve the vector compaction problem for power

estimation was recently presented in [14]. In that paper, the
authors use elements from probabilistic automata theory to
synthesize stochastic machines which can be used in a stand-
alone mode for sequence compaction.

From a practical point of view, however, this approach has
two inherent limitations:
• The values in the initial transition matrix themselves are
important in the decomposition process: some distributions of
transition probabilities tend to favor a small number of degenerate
matrices, as opposed to others which result in much longer
decompositions.
• The compaction technique on stochastic machines is a
multiple-step compaction technique. An initial pass through the
sequence is performed to extract the statistics of interest; after
that, the stochastic machine is synthesized and then the new
sequence is generated. This is especially disadvantageous for
large sequences when the on-line computer memory and time
requirements become prohibitive.

The disadvantages mentioned above can be eliminated by
using DMC modeling. To this end, in what follows we introduce
an original framework for power-oriented data compaction.

From Section III.A, it follows that not only a particular
vector vi in a given sequence is important, but also its relative
position in that sequence matters. More precisely, different
permutations of vectors belonging to the same initial set (v1,
v2,..., vn), define completely different input sequences. Coming
back to the model presented in Section II, we observe that DMT0
alone cannot capture this property; we say that DMT0 has no
memory and therefore the relative order of vectors in the initial
sequence is irrelevant in the construction of DMT0. For instance,
in Fig.2b, the value of 3/8 is the probability to find the particular
string (state) ‘1001’ in the original sequence, but this gives no
indication about the sequencing of this vector relative to another
one, let say ‘0001’.

To solve properly the compaction problem, we refine now the
above structure by incorporating in it first-order memory effects.
Specifically, we consider a more intricate structure, namely a tree
called DMT1 (Dynamic Markov Tree of order 1).
Example 2: For the same sequence in Example 1, suppose we
want to construct its corresponding tree DMT1. We begin as in
DMT0 and for each leaf that represents a valid combination in the
original sequence, we construct a new tree (having the same depth
as DMT0) which is meant to preserve the context in which the
next combination occurs. For instance, the vector v2 = 0001
follows immediately after v1 = 0000; consequently when we
reach the node that corresponds to v1 (the leftmost path in Fig.3a),
instead of going back to the root (and therefore ‘forgetting’ the
context), we start to build a new path (rooted at the current leave
of DMT0) as indicated in Fig.3a. The newly constructed path will
preserve the context in which v2 = 0001 occurred that is,
immediately after v1 = 0000 (denoted by v1 → v2). After
processing the pair (v1,v2), we come back to the root and continue
with (v2,v3) as shown in Fig.3b; v2 alone leads us to the second
leftmost edge of DMT0 from where, to construct DMT1, we have
to add the path ‘1001’ which corresponds to v3. In this way, we
indicate the sequencing between v2 and v3 that is, v2 → v3.

In fact, all vectors except the first and the last are processed
exactly twice, once in the upper DMT0 and next in the lower
subtree. What is important to note here, is that all vector pairs in
the original sequence are processed, that is, none of them is
skipped during the construction of DMT1. This is the theoretical
basis for accurate modeling of the input sequences as first-order
Markov sources of information.

Fig.3: Construction of the tree DMT1

Similarly, continuing this process for all leaves in DMT0, we end
up by building the whole tree DMT1 as shown in Fig.4.

Fig.4: The tree DMT1 for the sequence in Example 1

In Fig.4, the upper subtree (levels 1 to 4) represents DMT0,
that is, it sets up the state probabilities for the sequence; the lower
subtrees (levels 5 to 8), give the actual sequencing between any
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two successive vectors. To keep the counts in these subtrees
consistent, while we traverse the lower subtrees and update the
counts on their edges, we also accordingly increment the counts
on the paths in the upper subtree. In practice the counts of these
two subtrees may differ by one (as it can be seen on the rightmost
path at the border between the upper and lower subtree in Fig.4),
due to the finite length of the sequences. A practical solution to
this issue is to consider the input sequence as being cyclic.

Obviously, DMT1 provides more information than DMT0. To
give an example, string ‘1001’ can follow only after ‘0001’ or
‘1100’, information that cannot be gathered by analyzing DMT0
alone.
Proposition 1 [19]. We write the probability of a vector string v =
v1v2...vn as follows:

                   (3)

where the conditional probabilities are uniquely defined by: p(x|v)
= p(vx) / p(v).
This property, used in connection with the counts on the edges,
allows a quick calculation of the transitions probabilities that
characterize any particular sequence. For example, if we want to
calculate the transition probability ‘1001’ → ‘1100’ we have from
Proposition 1 that ,

which is exactly the count on the path ‘10011100’ in the tree
DMT1 divided by the sequence length.
Theorem 1. Any sequence in S can be modeled as a first-order
Markov source using the structure DMT1 and parameters p. We
call this process Dynamic Markov Chain (DMC) modeling.
Sketch of proof: If v = v1 v2 is a string in the structure DMT1 such
that v1 is in the upper tree and v2 is in the lower tree, then p (v2 |
v1) = p (v) / p (v1). Thus, the parameters stored on the edges of
DMT1 structure provide the conditional probabilities that
characterize the lag-one Markov chain for the sequence in S. ■
Theorem 2. The structure DMT1 and parameters p are equivalent
to a stochastic sequential machine.
Sketch of proof: DMT1 defines a Markov source (based on
Theorem 1). Any Markov source is characterized by a stochastic
matrix A. According to the decomposition Theorem 1 given in
[14], this matrix is uniquely associated to a stochastic machine (a
finite-state machine with randomly generated inputs). Thus,
DMT1 is equivalent to a SSM. ■

Generally speaking, the theory of stochastic sequential
machines is far more developed than the theory of DMC
modeling. However, the DMC modeling technique based on
DMT1 seems to be more effective as it offers a much more
compact structure and generally outperforms the compaction
techniques based on stochastic machines. Specifically:
• Sequence compaction based on DMT1 avoids the time
consuming decomposition process necessary in stochastic
machines’ synthesis.
• Using DMT1 one can avoid the need for partitioning the input
vectors into groups of bits. Therefore, one can expect to improve
the accuracy, especially in those cases when the input patterns are
highly correlated.
• DMT1 is constructed dynamically (new nodes are added only
‘on demand’) therefore it offers a much more compact data
structure than matrix A does.

The structure DMT1 just introduced is general enough to
capture completely spatial correlations and first-order temporal
correlations. Indeed, the recursive construction of DMT1 by

considering successive bits in the upper and lower subtrees
completely captures the word-level (spatial) correlations for each
individual input vector in the original sequence. Furthermore,
cascading lower subtrees for each path in the upper subtree, gives
the actual sequencing (temporal correlation) between two
successive input patterns.

IV. A DMC-BASED VECTOR COMPACTION PROCEDURE
A practical procedure to construct DMT1 and generate the

compacted sequence is given in Fig.5a. During a one-pass
traversal of the original sequence (when we extract the bit-level
statistics of each individual vector v1,v2...,vn and also those
statistics that correspond to pairs of consecutive vectors (v1v2),
(v2v3),...,(vn-2vn-1),(vn-1vn)) we grow simultaneously the tree
DMT1. We continue to grow DMT1 as long as the number of
nodes in the Markov model is smaller than a user-specified
threshold (model_size), otherwise we just generate the new
sequence up to that point and discard (flush) the model. A new
Markov model is started again and the process is continued up to
the end of the original sequence.

The generate_seq procedure called by the DMC program is
detailed in Fig.5b. Each generation phase is driven by the user-
specified compaction parameter ratio that is, in order to generate
a total of m = n/ratio vectors, we keep the same compaction ratio
for every dynamically grown Markov model. For the generation
step, we use a modified version of the dynamic weighted selection
algorithm [20]. In that approach, a similar structure with DMT0 is
built; more precisely, a full tree having on the leaves the symbols
that need to be generated. The counts on the edges are
dynamically changed and the symbols are generated according to
their probability distribution. For this, a single random number
generator is required in order to divide the interval [0,1] into
subintervals that correspond to symbols’ probabilities. At each
level, the random number is compared to the left probability: if
lower, a zero value is generated; if greater, a one value is
generated and the number is decreased by the left probability. We
use this strategy only to generate the first vector. After that, to
ensure a minimal level of error, we use an error controlling
mechanism in a greedy fashion. More precisely, at each level in
the lower Markov tree, in order to decide whether a zero or one
has to be generated, we compute the transition probabilities for
both alternatives and choose the one that minimizes the absolute
error accumulated up to that point. Simultaneously, the upper tree
is parsed from the root to the leaves, according to the bits
generated in the lower subtree. The procedure is then resumed
until the needed number of vectors is generated.
Example 3: Assume that we are given the following 3-bit
sequence consisting of 17 non-distinct vectors: (v1, v2, v3, v4, v5,
v6, v7, v8, v9, v11, v12, v13, v14, v15, v16, v17) = (001, 100, 001, 110,
111, 111, 101, 110, 011, 000, 101, 001, 100, 000, 110, 110, 011);
our objective is to compact this sequence with a compaction ratio
of 2.

We start building the Markov model that characterizes the
initial sequence. For clarity, the construction of the tree DMT1 is
shown in Figs.6-7 for two different scenarios. First, in Fig.6, we
assume that the parameter model_size is set by the user to the
value 35; this means that the model can be grown dynamically
(without any need for flushing) until this limit is reached.

p v( ) p v1( ) p v2 v1( ) … p vn v1v2…vn 1–( )⋅ ⋅ ⋅=

p v( ) p v1v2( ) p v1( ) p v2 v1( )⋅ 3 8⁄= = =
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Fig.6: DMT1 for sequence in Example 3 (model_size = 35)

Once we built the Markov tree in Fig.6, we start the procedure
generate_seq with parameter ratio = 2 and generate a subset of 8
vectors which best approximate the original sequence. If we
assume that x = 0.23 is the first randomly generated number,
based on the tree in Fig.6, since 0.23 < 7/17 we take the left edge,
generate a value 0 and x remains unchanged. At the second level,
x = 0.23 < 5/17 so again we generate a ‘0’ and leave x unchanged.
Now x = 0.23 > 2/17 so a ‘1’ is generated and x becomes x = 0.23
- 2/17 = 0.11. For the lower subtree rooted at the node denoted by
the vector ‘001’ (that is, we parse the upper subtree according to
the already generated bits 0, 0, 1), to produce the second vector,
we use the error controlling mechanism. Specifically, at node N1
in Fig.6, the only choice is to take the right edge, generating a ‘1’.
Next, at node N2, the absolute error made for the transition
probabilities becomes |2/17-1/8| + |1/17 - 0| = 0.066 if we take the
left edge, and |2/17 - 0| + |1/17 - 1/8| = 0.183 if we take the right
edge (8 is the length of the sequence to be obtained). The first
choice is preferred and therefore a ‘0’ is generated.

At the last level, at node N3, the decision is quite simple as we

have only one descendent. Thus, after the first vector ‘001’, we
generate ‘101’ as the second vector. The generation procedure
continues for the lower subtree rooted at the node denoted by the
vector ‘101’ until the desired length m = n/ratio is achieved.
Despite its locality, this decision strategy performs very well in
practice; as we will see in the experimental part, the overall level
of error is small in all practical cases.

In the second scenario, illustrated in Fig.7, the model_size
parameter is set by the user as being 30 therefore the tree in
Scenario 1 cannot be grown as such because the limit of 30 nodes
is reached before the whole sequence is scanned. As a
consequence, once we reach this limit (this actually happens
immediately after processing the subsequence v1, v2,..., v9), we
stop growing the tree and call generate_seq procedure with
parameter ratio = 2 (Fig.7a). This will produce a subsequence of
4 vectors which best approximate the first ‘segment’ (v1, v2,..., v9)
of the original sequence. After that we flush the model (keeping
only the very last processed vector v9) and start a new Markov
tree as shown in Fig.7b. When the whole sequence is exhausted,
based on this new Markov tree, we generate a new subset of 4
vectors which best approximate the second ‘segment’ (v9, v10,
v11,..., v17) of the original sequence.

We also note that this strategy does note allow ‘forbidden’
vectors that is, those combinations that did not occur in the
original sequence, will not appear in the final compacted
sequence either. This is an essential capability needed to avoid
‘hang-up’ (‘forbidden’) states of the circuit during simulation
process for power estimation.
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procedure DMC (input_file, ratio, model_size) {
  initial_state = new_state ();
  symbol = read_input (input_file);
  update_tree (symbol, upper_tree, initial_state);
  crt_state = last_state (symbol, upper_tree);
  while (!EOF (input_file)) {

symbol = read_input (input_file);
 if (number_of_states < model_size) {

      update_tree (symbol, lower_trees, crt_state);
      update_tree (symbol, upper_tree, initial_state);

crt_state = last_state (symbol, upper_tree);
    }

else {
      generate_seq (upper_tree, lower_trees, ratio);
      flush_model (upper_tree, lower_trees);
      initial_state = new_state ();
      symbol = read_input (input_file);
      update_tree (symbol, upper_tree, initial_state);
      crt_state = last_state (symbol, upper_tree);
     }
  }
  generate_seq (upper_tree, lower_trees, ratio);
}

procedure generate_seq (upper_tree,
lower_trees, ratio) {
crt_symbol = generate_random ();
lower_tree_node = last_node (upper_tree,

crt_symbol);
upper_tree_node = root (upper_tree);
do {
for each bit in the current vector {

      generate ‘0’ or ‘1’ to maximize the decrease in
      absolute error;

if (‘0’ is generated) {
lower_tree_node = left (lower_tree_node);
upper_tree_node = left (upper_tree_node);

      }
else {
lower_tree_node = right (lower_tree_node);
upper_tree_node = right (upper_tree_node);

      }
    }

lower_tree_node = upper_tree_node;
upper_tree_node = root (upper_tree);

  }
while there are still vectors to be generated;

(a) (b)
Fig.5: The vector compaction procedure
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Fig.7: DMT1 for sequence in Example 3 (model_size = 30)

In general, by alternating the generation and flushing phases
in the DMC procedure, the complexity of the model can be
effectively handled. The issue of accuracy in the context of these
repeated flushes is discussed in the subsequent section.

V. PRACTICAL CONSIDERATIONS
A. Complexity Related Issues

The DMC modeling approach offers the significant
advantage of being a one-pass adaptive technique. As a one-pass
technique, there is no requirement to save the whole sequence in
the on-line computer memory. Starting with an initial empty tree
DMT1, while the input sequence is scanned incrementally, both
the set of states and the transition probabilities change
dynamically making this technique highly adaptive.

A natural question still remains: when should the growing
process be halted? If it is not halted, there is no bound on the
amount of memory needed. On the other side, if it is completely
halted we lose the ability to adapt if some characteristics of the
source message change. A practical solution is to set a limit on
the number of states in the DMC [17] as we actually did in [12].
When this limit is reached, the Markov model is flushed and a
new model is started. Although this solution may appear as too
drastic, in practice it performs very well. The intuition behind this
property is the capability of DMC model to adapt very fast to
changes that occur while the input is scanned. A less extreme
solution to limit model growing is also possible; we can keep a
backup buffer that retains the last p vectors emitted by the source
and whenever the model should be discarded, we may reuse this
information to avoid starting the new model from the scratch.

B. Accuracy Related Issues
Let us consider first the case when the number of nodes allowed
in the model is sufficiently large to process the whole sequence.
In this case, we may use two compaction strategies. The first is to
monitor the current values of the transition probabilities and
compare them with the transition probabilities of the original
sequence. When the difference between the two sets of
probabilities becomes sufficiently small, the generation process is

halted. Therefore, we are able in this way to satisfy any user
specified error level for the transition probabilities. The second
strategy is to set the compaction ratio to a given value, perform
compaction, and then compute the error obtained by compaction
a posteriori.

If the number of cells allowed in the model (model_size
parameter in DMC procedure) is too small to allow the processing
of the whole sequence, then we must resort to flushing. We should
note that in this case the same compaction ratio has to be used for
all subsequences and thus its value has to be set upfront. To see
how the flushing technique affects the accuracy, suppose that
during the building of the Markov model, flushing occurs after the
first n1 vectors, then after the next n2 vectors, and so on. If the
number of flushes is f, then n1 + n2 +... + nf = n.
Theorem 3 [12]. If the i-th subsequence is approximated with an
error less than εi, then the accuracy for the whole sequence is:

                                                  (4)

where r is the compaction ratio.
Therefore, as long as the models for partial DMCs capture the
transition probabilities for the initial subsequences up to some εi,
then the transition probabilities for the entire sequence are
preserved up to some ε.

However, the non-homogeneous sequences that may arise in
practice (e.g. sequences which exhibit widely different transition
behaviors over time) can have very different transition
probabilities for each of their subsequences. In such cases, if
flushing is done properly so as to distinguish between
subsequences with different transition behavior, then the overall
accuracy can be significantly improved. This is an interesting
problem which requires further investigation.

VI. EXPERIMENTAL RESULTS
The overall strategy is depicted in Fig.8. We assume that the

input data is given in the form of a sequence of binary vectors.
Starting with an k-bit input sequence of length n, we perform a
one-pass traversal of the original sequence and simultaneously
build the basic tree DMT1; during this process, the frequency
counts on edges of DMT1 are dynamically updated.

Fig.8: Experimental setup

The next step in Fig.8 does the actual generation of the output
sequence (of length m). If the initial sequence has the length n and
the new generated sequence has the length m < n, then we say that
a compaction ratio of r = n/m was achieved.

Finally, a validation step is included in the strategy; for short
sequences we used the commercial tool PowerMill [2] whilst for
long sequences we resorted to an in-house gate-level logic
simulator developed under SIS.

In Tables 1-2, we provide the real-delay results for two types
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of initial sequences. Sequences of type 1 are large input streams
having the same initial length n =100,000 and being then prime
candidates for compaction; type 1 refers to biased sequences
obtained by doing bit-level logical operations on ordinary
pseudorandom sequences. The sequences of type 2 (having the
length 4,000) are highly biased sequences obtained from real
industry applications.

As shown in Table 1, sequences of type 1 were compacted
with two different compaction ratios (namely r = 50 and 100); we
give in this table the total power dissipation measured for the
initial sequence (column 3) and for the compacted sequence
(columns 4, 5). In the last column, we give the time in seconds
(on a Sparc 20 workstation with 64 Mbytes of memory) necessary
to read and compress data with DMC modeling.

Since the compaction with DMC modeling is linear in the
number of nodes in the structure DMT1, the values reported in
the last column are far less than the actual time needed to
simulate the whole sequence. During these experiments, the
number of states allowed in the Markov model was 20,000
(about 560 Kbytes).

As we can see, the quality of results is very good even when
the length of the initial sequence is reduced by 2 orders of
magnitude. Thus, for C432 in Table 1, instead of simulating
100,000 vectors with an exact power of 1816.32 μW, one can
use only 2000 vectors with an estimate of 1838.89 μW or just
1000 vectors with a power consumption estimated as 1779.60
μW. This reduction in the sequence length has a significant
impact on speeding-up the simulative approaches where the run
time is proportional to the length of the sequence which must be
simulated.

The sequences of type 2 were compacted for two compaction
ratios (r = 5 and r =10) using PowerMill; to asses the potential of
efficiency of the approach, for both original and compacted
sequences, we report also the actual run time required by
PowerMill to provide power estimates. The number of nodes
allowed for the Markov model construction, was 5,000 (about 140
Kbytes); the CPU time for DMC modeling was below 3 seconds
in all cases.

As it can be seen in Table 2, the average relative error is
below 5% while the speed-up in power estimation is about one
order of magnitude on average. For example, using the original
sequence of 4000 vectors, PowerMill took for C432 about 1186

seconds to estimate a total current of 0.4135 mA. On the other
side, using the sequence generated with DMC of only 400 vectors
(r = 10), PowerMill estimated a total current of 0.4066 mA in
only 120 seconds.

We note also, that the results presented both tables 1 and 2,
are significantly better than those reported in [14] in terms of
running time and memory requirements.

Finally, we compare our results with simple random sampling
of vector pairs from the original sequences. In simple random
sampling, we performed 1,000 simulation runs with 0.99
confidence level and 5% error level on each circuit1. We report in
Table 3 the maximum and average number of vector pairs needed
for total power values to converge [11]. We also indicate the
percentage of error violations for total power values, using as
thresholds 5%, 6% and 10%. Using different seeds for the random
number generator (and therefore choosing different initial states
in the sequence generation phase), we run a set of 1,000
experiments for the DMC technique. In Table 4, we give the
DMC results for the same thresholds as those used in simple
random sampling.

1This means that the probability of having a relative error
larger than 5% is only 1%.

Table 1: Total Power (μW@20MHz) for sequences of type 1

Circuit
No.of
Inputs

Power for
initial seq.

Power for
r = 50

Power for
r = 100

Time for
DMC
(sec)

C432 36 1816.32 1838.89 1779.60 42

C499 41 3697.84 3546.65 3622.26 48

C880 60 3314.07 3229.85 3329.31 75

C1355 41 3205.27 3044.20 3109.18 48

C3540 50 10876.22 9910.08 10687.32 61

C6288 32 110038.69 114199.50 109077.42 37

s344 9 751.58 748.54 719.53 10

s386 7 818.11 844.58 848.80 8

s510 19 2269.97 2354.08 2337.59 17

s820 18 3996.17 4028.22 4049.03 17

s838 34 1052.05 1061.73 1091.14 41

s953 16 1479.25 1492.78 1468.48 16

s1196 14 3687.47 3702.32 3580.63 16

s5378 35 12781.99 12507.97 12609.96 41

s9234 36 9192.75 9157.31 9209.75 43

% error 2.55 2.57

Table 3: Results for Simple Random Sampling

Number of vector pairs Error violations

Circ. Max. Avg. > 5% > 6% >10%

C432 3300 2176 1.1 0.7 0.4

C499 1500 862 1.4 1.3 0.2

C880 3990 2705 1.8 0.4 0.7

C1355 1380 814 1.7 1.0 0.2

C1908 1620 846 1.9 1.3 0.2

C3540 2340 1446 2.0 1.3 0.4

C6288 7470 5422 1.4 1.4 0.3

Table 4: Results for DMC Approach

Error violations

Circ. No. of vect. > 5% > 6% >10%

C432 2000 6.7 1.9 0.0

C499 800 0.3 0.0 0.0

C880 2000 1.4 0.1 0.0

C1355 800 0.2 0.0 0.0

C1908 800 1.9 1.2 0.0

C3540 1000 0.9 0.0 0.0

C6288 2000 0.0 0.0 0.0

Table 2: Total Current (mA) for sequences of type 2

Initial sequence Compacted sequence

Circuit
No.of
Inputs

Current
(mA)

Time to
simulate

(sec)

Current
(mA)
r = 5

Current
(mA)
r = 10

Time to
simulate

(sec)
r = 10

C432 36 0.4135 1186 0.4352 0.4404 120

C499 41 0.8188 2675 0.8337 0.8290 235

C880 60 0.7907 2289 0.8324 0.8023 274

C1355 41 1.1375 2993 1.1549 1.1461 284

C1908 33 1.2976 4034 1.2821 1.2833 367

C3540 50 3.4490 9467 4.0500 3.8580 1082

C6288 32 14.5749 88032 14.8020 15.9315 5005

% error 4.85 4.80
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Once again, the results obtained with DMC modeling
technique score very well and prove the robustness of the present
approach. As we can see, using fewer vectors, the accuracy of
DMC is higher than the one of simple random sampling in most
of the cases.

VII. CONCLUSION
In this paper, we addressed the vector compaction problem

from a probabilistic point of view. Based on dynamic Markov
Chain modeling, we proposed an original approach to compact an
original sequence into a much shorter equivalent one, which can
be used after that with any available simulator to derive power
estimates in the target circuit.

The mathematical foundation of this approach relies in
Markov models; within this framework a family of dynamic
Markov trees is introduced and characterized as an effective and
flexible way to model complex spatiotemporal correlations which
occur during power estimation. The results obtained both on
combinational and sequential benchmarks show that large
compaction ratios of 1-2 orders of magnitude can be obtained
without much loss in accuracy in total power estimates.
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