

Prior Work

• Area:

- Armstrong '62 graph embedding approach
- De Micheli, et al '85 algebraic approach to input encoding
- Devadas, et al '91 algebraic approach for output & state encoding
- Sangiovanni, et al '90 graph embedding approach to state encoding (NOVA)
- Newton, et al '88, '91 (MUSTANG, MUSE) state encoding for multilevel realization
- Power
 - Roy, et al '92 state encoding for state line switching activity
 - Olson, et al '94 state encoding for state line switching activity + literal count
 - Pedram, et al '98 low power state encoding considering switched capacitance in resulting logic

ASP-DAC 2003

Deterministic Approach (cont'd)

repeat pick a transition; make transitions until a cycle C is recover $W(C) = \min$. prob. of transitions on C; add the cycle C to the set of cycles C; decrease prob. of each transition on C b; until no more transition is left;

- Cycle set is not unique.

- Weights depend on cycle generation order.

ASP-DAC 2003

Cycle-based State Assignment

 $2^{\lceil \log |S| \rceil}$

27/38

ASP-DAC 2003

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

- Using D flip-flops: $D = \eta(x, s)$
- Using T flop-flops: $T = \eta(x, s) \oplus s$
 - T flip-flops usually result in more complex combinational logic realization.
 - T flip-flops are more efficient for counters. (Wu et al.)
- Do T flip-flops work better with cycle-based state assignment?

ASP-DAC 2003

FSM	State #	Cycle-based	Genetic
		Runtime (s)	runtime (s)
bbara	10	0.4	10
sand	32	0.8	390
planet	48	0.8	600
train11	11	0.4	5
beecount	7	0.3	5
dk14	7	0.3	2
dk16	28	0.6	220
dk512	15	0.4	130
donfile	24	0.5	165
dvram	35	0.8	435
ex1	21	0.7	155
ex2	19	0.6	100
ex3	10	0.4	53
ex5	9	0.4	42
ex7	10ASP-D	0AC 2003 0.4	56

5/38

Experimental Results - I

Power & Switching Activity

Objective: Minimize average switching activity on state bit lines

The above problem, know as Minimum Weighted Hamming Distance (*MWHD*), is NP-Complete.

Ping-Pong Encoding Encode states such that each state has minimum distance from its neighbors.					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
ASP-DAC 2003	44/38				