Low-power Synthesis of FSMs with Mixed D \& T Flip-Flops

Ali Iranli, Peyman Rezvani and Massoud Pedram Department of Electrical Engineering - Systems University of Southern California

Outline

- Background
- FSM \& Markov Process
- State Assignment - Area / Power
- Prior Work
- Markov Process Cycle Decomposition
- Cycle-based State Assignment
- Hybrid FSM Realization
- Conclusion

Outline

- Background
- FSM \& Markov Process
- State Assignment - Area / Power
- Prior Work
- Markov Process Cjule Decompositition
c Cycle-lozsed Stiatie Assiginment
- Hylorid FSVM Fealizafíion
c Gonciusion

Finite State Machines

- Model behavior of sequential circuits by finite state machines.
- Finite State Machine (FSM):
- $\left(X, Y, S, s_{0}, \lambda, \eta\right)$
- X : Set of input symbols
- Y: Set of output symbols
- S: Set of states
$-s_{0}$: Initial state $-s_{0} \in S$

λ : Output function - $\lambda: X \times S \rightarrow Y$ η : Next state function - $\eta: X \times S \rightarrow S$

FSM \& Markov Process

- Model probabilistic behavior by a Markov Process
- FSM state \leftrightarrow Markov Process state

$$
p_{i}=\operatorname{Pr}\left(s_{i}\right)
$$

- FSM transition \leftrightarrow Markov process transition

$$
p_{i j}=\operatorname{Pr}\left(s_{i} \rightarrow s_{j} \mid s_{i}\right)
$$

FSM \& Markov Process (cont'd)

Finite State Machine
Markov Process

FSM \& Markov Process (cont'd)

FSM \& Markov Process (cont'd)

- Irreducible Markov Process:
- Any state s_{j} can be reached from any state s_{i}

$$
p_{i j}^{*}=\sum_{n=1}^{\infty} p_{i j}^{n} \succ 0
$$

- Recurrent Markov Process:
- Any state s_{i} is reachable from itself; i.e.,

$$
\sum_{j} p_{i j}=1 \Longleftrightarrow \sum_{j} p_{i} p_{i j}=\sum_{j} p_{j} p_{j i}
$$

- The Markov process modeling a FSM is irreducible \& recurrent

State Assignment

Encoding Problem:
\square Transform a cover of symbolic logic function into a cover of binary logic function
\square Three classes:
Input Encoding
Output Encoding
Input / Output Encoding
State Assignment

\square Input / Output Encoding
\square Difficult problem!

State Assignment

State Assignment Problem:

- Assign unique codes to each state of an FSM in order to optimize an objective function
- Area
- Circuit speed
- Power dissipation

Prior Work

- Area:
- Armstrong '62 - graph embedding approach
- De Micheli, et al '85- algebraic approach to input encoding
- Devadas, et al '91 - algebraic approach for output \& state encoding
- Sangiovanni, et al '90-graph embedding approach to state encoding (NOVA)
- Newton, et al '88, '91 (MUSTANG, MUSE) - state encoding for multilevel realization
- Power
- Roy, et al '92 - state encoding for state line switching activity
- Olson, et al '94 - state encoding for state line switching activity + literal count
- Pedram, et al '98- low power state encoding considering switched capacitance in resulting logic

Outline

- Introduction
- Background
- FSM \& Markov Process
- State Assignment - Area / Power
- Prior Work
- Markov Process Cycle Decomposition
r Cjucle-loə.sed Stizte As.siginment.

c Gongiusion

What is a cycle?

- A particle's motion on a closed curve:
$C=\left(v_{1}, v_{2}, \ldots, v_{t}, v_{\tau+1}=v_{1}, v_{\tau+2}=v_{2}, \ldots\right)$
- Directed cycle C over set of states S :
- Periodic function from \mathbb{Z} into S
$-C(I) \quad$ vertex -- state i in the cycle
- $(C(1), C(i+1))$ directed edge - a transition in the cycle

Cycles - notation

- C_{1} and C_{2} are equivalent if and only if:

$$
C_{1}(i)=C_{2}(t(i)) \text { where } t \text { is a translation function over } \mathbb{Z}
$$

- First order passage function of C :

$$
J_{C}(v)= \begin{cases}1 & \text { if } \exists i \in \mathbb{Z}, C(i)=v \\ 0 & \text { otherwise }\end{cases}
$$

- Second order passage function of C :

$$
J_{C}\left(v, v^{\prime}\right)= \begin{cases}1 & \text { if } \exists i \in \mathbb{Z}, C(i)=v \text { and } C(i+1)=v^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

Markov Process \& Cycles

- Consider a set of r cycles: $C=\left\{C_{1}, C_{2}, \cdots, C_{r}\right\}$
- Each cycles $C_{\text {i }}$ is associated with a positive number $W\left(C_{i}\right)$.
- v lies on $C_{1}, \ldots, C_{t}(t \leq r)$
- v lies on $C_{1}, \ldots, C_{m}(m \leq t)$
- A measure of transition from v to v :

$$
\frac{W\left(C_{1}\right)+W\left(C_{2}\right)+\ldots+W\left(C_{m}\right)}{W\left(C_{1}\right)+W\left(C_{2}\right)+\ldots+W\left(C_{t}\right)}
$$

- Conclusion: A collection of weighted cycles defines a Markov Process

Markov Process \& Cycles

Theorem:

- Let S be a finite set of states. Consider a recurrent Markov process ξ defined over S. There exists a finite set of weighted cycles \mathbb{C} such that superimposing them defines ξ :

$$
\begin{aligned}
& p_{i}=\sum_{C \in \mathbb{I}} W(C) J_{C}\left(v_{i}\right) \\
& p_{i j}=\sum_{C \in \mathbb{1}} W(C) J_{C}\left(v_{i}, v_{j}\right) / p_{i}
\end{aligned}
$$

Cycle Decomposition

Cycle Decomposition (CyDec) Problem:

- Given a recurrent Markov process ξ defined over a set of states S, find a set of weighted cycles \mathbb{C} such that their superposition defines the given Markov process.
- Solution is not unique.
- Two classes of solutions:
- Randomized approaches
- Deterministic approaches

Randomized Approach

Randomized Approach (cont'd)

```
repeat forever
    pick a random state;
    make random transitions until a cycle C i$
    add the cycle C to the set of cycles }\mathbb{C}\mathrm{ ;
calculate cycle weights by solving set of equati
    pip}\mp@subsup{p}{ij}{}=\mp@subsup{\sum}{C\in\mathbb{D}}{}W(C)\mp@subsup{J}{C}{}(\mp@subsup{v}{i}{},\mp@subsup{v}{j}{}
```

- All possible cycles are found.
- Cycle weights are unique.
- Number of cycles can grow exponentially.

Deterministic Approach

Deterministic Approach (cont'd)

```
repeat
    pick a transition;
    make transitions until a cycle C is reco
    W(C) = min. prob. of transitions on C
    add the cycle }C\mathrm{ to the set of cycles }\mathbb{C}\mathrm{ ;
    decrease prob. of each transition on C b
until no more transition is left;
```

- Cycle set is not unique.
- Weights depend on cycle generation order.

Deterministic Approach (cont'd)

Theorem:

- Number of cycles generated by the deterministic approach is $O\left(/ S /^{2}\right)$.

- After each cycle extraction, probability of one transition becomes zero.
- Edge count is $O\left(/ S /{ }^{2}\right)$.

Outline

- Intiroduction
- Background
- FSM \& IMarkov Process
- Stiaie Assighment - Area / Power
- Prior Work
c Markov Process Cycle Decomposition
- Cycle-based State Assignment
r Hylorid F.SVM Fiealizatiion
- Gonclusion

Cycle-based State Assignment

Algorithm Flow:

- Build Markov process representing the FSM
- Find cycle decomposition \mathbb{C}
- Use the deterministic approach
- Encode each cycle in \mathbb{C} separately

Ping-Pong Encoding

- States on a cycle can be optimally encoded using Gray code.
- Start with the middle Gray code.
- Encode states on cycle while maintaining a Hamming distance of 1 .

Ping-Pong Encoding

- After some cycles are encoded, the rest of cycles will be partially coded; hence they may not be optimally encoded.
- Which state to start with?

- Start with the longest sequence of coded states.

Cycle-based State Assignment

```
build Markov process for \xi FSM;
\mathbb { C } = ~ c y c l e ~ d e c o m p o s i t i o n ~ o f ~ \xi ;
sort cycles in \mathbb{C according to their weights;}
generate gray codes;
for each cycle in \mathbb{C}
    if most of states on cycle are not coded
        ping-pong encode the cycle;
```

- Number of gray codes:

$$
2^{[\log |S|\rceil}
$$

Outline

- Intiroduction
- Backeground
- FSM \& IMarkov Process
- Siaie Assignment - Area / Power
- Markov Progess Cjoge Degomposition
c Gycle-lozsed Síaie Assiginment:
- Hybrid FSM Realization
- Goncilusion

FSM Implementation

- Using D flip-flops: $D=\eta(x, s)$
- Using T flop-flops: $T=\eta(x, s) \oplus s$
- T flip-flops usually result in more complex combinational logic realization.
- T flip-flops are more efficient for counters. (Wu et al.)
- Do T flip-flops work better with cycle-based state assignment?

Hybrid FSM Realization

- Ideal:
- Cycles with larger weights are encoded first \Rightarrow states are encoded with min. Hamming distance \Rightarrow better candidates for T flip-flop implementation.
- Cycles with smaller weights are encoded last \Rightarrow states are encoded with larger hamming distance \Rightarrow better candidates for D flip-flop.
- Impossible:
- All states are implemented using the same flipflops.

Hybrid FSM Realization

- High-order bits have smaller switching
- MSB is an exception. It has the largest switching activity.
- Use D flip-flop for high-order bits; T flip-flop for low-order bits.

Hybrid FSM Realization

- States are encoded by:
- Ping-pong encoding
- Minimum Weighted Hamming Distance (MWHD)
- n : Number of states on those cycles encoded by ping-pong encoding
- Use $\lceil\log n\rceil$ T flip-flops for low-order bits (and MSB).
- Special Case - counters:
- All states are encoded by ping-pong.
- All bits are implemented by T flip-flop.

Experimental Results - I

- Comparison of:
- Average switching activity of bits on state lines
- Runtime
- Finite state machines from LGSynth89
- Encoded using 3 techniques:
- Cycle decomposition
- Genetic search
- Optimal (exhaustive search)

Experimental Results - I

\square cycle-based
\square genetic
\square optimal

Experimental Results - I

FSM	State \#	Cycle-based Runtime (s)	Genetic runtime (s)
bbara	10	0.4	10
sand	32	0.8	390
planet	48	0.8	600
train11	11	0.4	5
beecount	7	0.3	5
dk14	7	0.3	2
dk16	28	0.6	220
dk512	15	0.4	130
donfile	24	0.5	165
dvram	35	0.8	435
ex1	21	0.7	155
ex2	19	0.6	100
ex3	10	0.4	53
ex5	9	0.4	42
ex7	10 ASP-DAC 20030.4	56	

Experimental Results - II

- Encoded finite state machines by cycle-based state assignment method.
- Implemented using D vs. D/T flip-flops.
- Used script.rugged in SIS to optimize resulting circuit.
- Technology mapped to a $0.25 \mu \mathrm{~m}$ library.
- Estimated power using 100,000 uniformly distributed input vectors.
- Achieved as much as 15% reduction in the total dynamic power dissipation.

Experimental Results - II

Conclusion

- Proposed a state assignment technique based on cycle decomposition of Markov processes to minimize switching activity on state bit lines.
- Proposed a hybrid implementation technique for finite state machines using both D and T flip-flops which, in conjunction with cycle-based state assignment method, significantly reduces dynamic power consumption

BACK UP SLIDES

Dynamic Power Consumption

- Dynamic Power Consumption:
- $V_{d d} \quad$ Supply voltage
- $f \quad$ Clock frequency
- $C_{\text {load }} \quad$ Capacitive load of gate
- E Ewitching Average numberr of changes in output of gate

Power \& Switching Activity

Objective: Minimize average switching activity on state bit lines

The above problem, know as Minimum Weighted Hamming Distance (MWHD), is NP-Complete.

Deterministic Approach (cont'd)

Theorem:

- After extracting each cycle, all state pairs s_{i} and s_{j} will still have the property:

- Therefore extraction of cycles in deterministic approach can be iterated.

Cycle Encoding

- States on a cycle can be optimally encoded using Gray code.

Ping-Pong Encoding

Encode states such that each state has minimum distance from its neighbors.

```
find best starting state on cycle;
for each un-encoded state on cycle:
    Low = first available code above middle
    High = first available code below middle
    code (state) = pick_better (Low, High);
```

