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ABSTRACT

This paper models the clock behavior in a sequential circuit by a quaternary variable and uses this representation

to propose and analyze two clock-gating techniques. It then uses the covering relationship between the triggering

transition of the clock and the active cycles of various flip-flops to generate a derived clock for each flip-flop in

the circuit. Design examples using gated clocks are provided next. Experimental results show that these designs

have ideal logic functionality with lower power dissipation compared to traditional designs.



Clock-Gating and Its Application to Low Power Design of Sequential Circuits

I. INTRODUCTION

The sequential circuits in a system are considered major contributors to the power dissipation since one input of

sequential circuits is the clock, which is the only signal that switches all the time. In addition, the clock signal

tends to be highly loaded. To distribute the clock and control the clock skew, one needs to construct a clock

network (often a clock tree) with clock buffers. All of this adds to the capacitance of the clock net. Recent studies

indicate that the clock signals in digital computers consume a large (15% - 45%) percentage of the system power

(1). Thus, the circuit power can be greatly reduced by reducing the clock power dissipation.

Most efforts for clock power reduction have focused on issues such as reduced voltage swings, buffer insertion

and clock routing (2). In many cases switching of the clock causes a lot of unnecessary gate activity. For that

reason, circuits are being developed with controllable clocks. This means that from the master clock other clocks

are derived which, based on certain conditions, can be slowed down or stopped completely with respect to the

master clock. Obviously, this scheme results in power savings due to the following factors:

1) Load on the master clock is reduced and the number of required buffers in the clock tree is decreased.

Therefore, the power dissipation of clock tree can be reduced.

2) The flip-flop receiving the derived clock is not triggered in idle cycles; the corresponding dynamic power

dissipation is thus saved.

3) The excitation function of the flip-flop triggered by derived clock may be simplified since it has a don’t care

condition in the cycle when the flip-flop is not triggered by the derived clock.

In (3) the authors presented a technique for saving power in the clock tree by stopping the clock fed into idle

modules. However, a number of engineering issues related to the design of the clock tree were not addressed and

hence, the proposed approach has not been adopted in practice.

This paper investigates various issues in deriving a gated clock from a master clock. In section II, a quaternary

variable is used to model the clock behavior and to discuss its triggering action on flip-flops. Based on this

analysis, two clock-gating schemes are proposed. In section III, we use the covering relation between the clock

and the transition behaviors of the triggered flip-flops to derive conditions for gating the master clock. Two

common sequential circuits, i.e. 8421 BCD code up-counter and three-excess counter, are then described to

illustrate the procedure for finding a derived clock. In section IV, a new technique for clock-gating is presented



which generates a clock synchronous with the master clock. This eliminates the additional skew between the

master clock and the derived clock. Thus, the designed sequential circuit is a synchronous one. Finally, we

present circuit simulation results to prove the quality of the derived clock and its ability to reduce power

dissipation in the circuit.

II. DESCRIPTION FOR CLOCK BEHAVIOR AND CLOCK-GATING

In a synchronous system, a flip-flop is triggered by a certain directional transition of a clock signal. For the clock

to be another signal rather than the master clock, it must offer the same directional transition to trigger the flip-

flop, and it must be “in step” with the master clock.

 For the clock signal clk in a circuit if we denote its logic values before and after a transition as clk(t) and clk+(t)

respectively, four combinations can be used to express different behaviors of the clock as shown in Table 1,

where a special quaternary variable clk
~

denotes the corresponding behavior. The four values are (0, α, β, 1),

where α, β represent two kinds of transition behaviors and 0, 1 represent two kinds of holding behaviors. (Note

that although they have the same forms as signal values 0 and 1, their meanings are different.)

Table 1 QUATERNARY REPRESENTATION FOR BEHAVIORS OF A SIGNAL

~
clk

)()( tclktclk +→ Behavior

0 0          0 0-holding

α 0          1 α-transition

β 1          0 β-transition

1 1          1 1-holding

In addition, we can also define a literal operation to identify the behavior of a clock:

                                                          
⎪
⎩

⎪
⎨

⎧

≠

=

,
~

clk    if             0
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clk    if             1

b
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clkb                                                         (1)

where }1 ,,,0{ βα∈b . Thus, the rising transition clkα and the falling transition clkβ of a clock are binary variables

and can serve as arguments of Boolean operations. For example, from Table 1 we have



++++ ⋅=⋅=⋅=⋅= clkclkclkclkclkclkclkclkclkclkclkclk 10    and   , , βα .

Assume that there are n flip-flops in a sequential circuit and that their outputs and clock inputs are denoted by Qi

and clki, i = 0,1,�,n-1, respectively. For a synchronous sequential circuit, we have clki  = clk, namely all flip-

flops are triggered by the same master clock signal clk. However, if a flip-flop Qi is to be disconnected from the

master clock during some (idle) cycles, then we have to use a derived clock for Qi. Notice that this derived clock

should be “in step” with the master clock for the circuits to remain synchronous.

Generally, we consider that the derived clock is obtained from the master clock clk and the outputs of other flip-

flops 1110 ,,,,, −+− nii QQQQ �� , (which make transitions following the triggering transition of their respective

clocks.) Since both AND gating and OR gating can be used for controlling the master clock, we have the

following two clock-gating forms

                                                               clkpgclk iii ⋅+= ,                                                                 (2)

                                                               )( clkpgclk iii +⋅= ,                                                               (3)

where gi and pi are functions of flip-flop outputs 1110 ,,,,, −+− nii QQQQ �� .

Consider a flip-flop triggered by the falling clock transition as an example (i.e. a negative edge-triggered flip-

flop). The timing relationships of clk, pi, clkpi ⋅ and clkpi +  are shown in Fig.1. Note that pi exhibits a delay with

respect to the falling transition of clock, may have glitches (represented by vertical grid lines), and has its final

stable value in the zone where clk = 0. We can see that clkpi +  cannot prevent the glitches and may even lead to

an extra glitch. Therefore, only (2) is suitable for the negative edge-triggered flip-flops while (3) is not. Note that

gi in (2) must be glitch-free when clk = 0.

The above discussion shows that the falling transition of clki in (2) occurs for the following two cases:

(1) When gi = 0 and pi  = 1, falling transition of clk leads to falling transition of the derived clock clki. Therefore,

pi  may be named the transition propagate term.

(2) When gi = 1 and gi makes a falling transition, the derived clock clki makes a falling transition since clk and

hence pi clk⋅ are 0 at that time instance.  Therefore, gi may be named the transition generate term.

From this analysis, we obtain

Figure 1 Timing relationship of clk,  pi(gi), pi⋅clk and pi+clk



                                                                 .βββ clkpggclk iiii ⋅⋅+=                                                              (4)

Similarly, we can show that the derived clock signal in (3)  is  suitable for the flip-flops triggered by the rising

transition of the clock. Here gi in (3) must be glitch-free when clk = 1. The rising transition of clki can be

expressed as

                                                                 clki gi gi pi clkα α α= + ⋅ ⋅ .                                                             (5)

It should be pointed out that the attached circuitry needed for generating the derived clock should be simple to

avoid excessive power dissipation due to this overhead circuitry. Therefore gi and pi in (2) and (3) should be

relatively simple functions. Especially, we require gi to be simple to avoid dangerous glitches. Note that if gi = 0,

pi = 1 in (2) or gi  = 1, pi = 0 in (3), we return to the condition of applying the master clock clk in a synchronous

sequential circuit.

III. DESIGN OF SEQUENTIAL CIRCUITS BASED ON DERIVED CLOCK

Assume that the derived clock for the flip-flop Qi is clki. Falling transitions of clki have to cover all cycles when

the flip-flop Qi makes transitions, α
iQ  and β

iQ . The covering relation can be expressed as:

                                                                         )( βαβ
iii QQclk +≥ .                                                                 (6)

Since AND and OR operations on Boolean variables can be interpreted as minimum and maximum operations on

these variables, i.e. ),min( yxyx =⋅  and ),max( yxyx =+ , we can obtain the following equations from (6)

                                                               )()( βαβαβ
iiiii QQQQclk +=+⋅ ,                                                          (7)

                                                                   .)( ββαβ
iiii clkQQclk =++                                                               (8)

Therefore, we should first obtain ( βα
ii QQ + ) and then generate the derived clock clki for flip-flop Qi . We will

show the procedure by using design examples.

Example 1.  Design of an 8421  BCD  code up-counter

The next states and state behaviors of an 8421 BCD code up-counter are shown in Table 2, where behavior of

each flip-flop ( +→ ii QQ ) is denoted by iQ
~ . From Table 2, the corresponding next state Karnaugh maps and

behavior Karnaugh maps may be obtained, as shown in Fig.2(a) and 2(b). In these maps an empty box represents



the don’t care condition. The two transition functions for each flip-flop can be derived from their corresponding

behavior Karnaugh maps as below:

Table 2 NEXT STATES AND STATE BEHAVIORS OF AN 8421 BCD CODE UP-COUNTER

3Q 2Q 1Q 0Q +
3Q +

2Q +
1Q +

0Q 3
~
Q 2

~
Q 1

~
Q 0

~
Q

0 0 0 0 0 0 0 1 0 0 0 α

0 0 0 1 0 0 1 0 0 0 α β

0 0 1 0 0 0 1 1 0 0 1 α

0 0 1 1 0 1 0 0 0 α β β

0 1 0 0 0 1 0 1 0 1 0 α

0 1 0 1 0 1 1 0 0 1 α β

0 1 1 0 0 1 1 1 0 1 1 α

0 1 1 1 1 0 0 0 α β β β

1 0 0 0 1 0 0 1 1 0 0 α

1 0 0 1 0 0 0 0 β 0 0 β

                                                        βα clkQQQQ ⋅⋅⋅= 0123 , ββ clkQQQ ⋅⋅= 033 ;                                         (9)

                                                       βα clkQQQQ ⋅⋅⋅= 0122 , ββ clkQQQQ ⋅⋅⋅= 0122 ;                                     (10)

                                                        βα clkQQQQ ⋅⋅⋅= 0131 , ββ clkQQQQ ⋅⋅⋅= 0131 ;                                   (11)

                                                                   βα clkQQ ⋅= 00 , ββ clkQQ ⋅= 00 .                                                (12)

Therefore, we have

                                                                   ββα clkQQQQQQ ⋅⋅⋅+=+ 012333 )( ,                                          (13)

                                                                            ββα clkQQQQ ⋅⋅=+ 0122 ,                                                (14)



                                                                           ββα clkQQQQ ⋅⋅=+ 0311 ,                                                (15)

                                                                                  ββα clkQQ =+ 00 .                                                     (16)

From (13)-(15) we find that ≥⋅ βclkQ0 ( βα
ii QQ + ), (i =1,2,3). From (12), we see that ββ clkQQ ⋅= 00  can serve as

the needed falling transition trigger for flip-flops Q1, Q2, and Q3, namely ββββ
0321 Qclkclkclk === . Comparing

these with (4), we get 0Qgi = ,   pi = 0  and  0Qclki = .    (i =1,2,3).

As for clk0, (16) indicates that the clock for Q0 is no other than the master clock clk. Since we only need take care

of the excitation input when the flip-flop receives a triggering falling clock transition (i.e. β entries in 0
~
Q  map),

we don’t care what the excitation inputs in other conditions are. Therefore the next state Karnaugh maps for flip-

flops Q1, Q2, and Q3 in Fig.2(a) can be simplified to those shown in Fig.2(c).

From Fig.2(a),(c) we can get the corresponding both synchronous and asynchronous designs, as shown in Fig.3.

(We say asynchronous, because now not all flip-flops are triggered at the same time.) Obviously the

corresponding combinational circuits are simpler. Besides, since three flip-flops Q3, Q2, Q1 have no dynamic

power dissipation half of the time when there is no clock triggering, and because the simpler combinational

circuits has lower node capacitance, the asynchronous design is saving power.

Example 2.  Design of an excess-three code up-counter

The next state and state transition of an excess-three code up-counter are shown in Table 3. Transition functions

for each flip-flop can be derived as below

                                               βα clkQQQQ ⋅⋅⋅= 0123 ,    ββ clkQQQQ ⋅⋅⋅= 1233 ;                                          (17)

                                           βα clkQQQQ ⋅⋅⋅= 0122 , ββ clkQQQQQQQ ⋅⋅⋅+⋅⋅= )( 0121232 ;                          (18)

                                                βα clkQQQQQQ ⋅⋅+⋅⋅= )( 010231 ,  ββ clkQQQ ⋅⋅= 011 ;                                   (19)

Figure 2

(a) Next state Karnaugh maps, (b) behavior Karnaugh maps, (c) simplified next state Karnaugh maps

Figure 3 Circuit realizations of  BCD  code up-counter

(a) synchronous design, (b) asynchronous design



                                                                  βα clkQQ ⋅= 00 ,   ββ clkQQ ⋅= 00 .                                                (20)

Table 3 THE NEXT STATES AND STATE BEHAVIORS OF A EXCESS-THREE CODE UP-COUNTER.

3Q 2Q 1Q 0Q +
3Q +

2Q +
1Q +

0Q 3
~
Q 2

~
Q 1

~
Q 0

~
Q

0 0 1 1 0 1 0 0 0 α β β

0 1 0 0 0 1 0 1 0 1 0 α

0 1 0 1 0 1 1 0 0 1 α β

0 1 1 0 0 1 1 1 0 1 1 α

0 1 1 1 1 0 0 0 α β β β

1 0 0 0 1 0 0 1 1 0 0 α

1 0 0 1 1 0 1 0 1 0 α β

1 0 1 0 1 0 1 1 1 0 1 α

1 0 1 1 1 1 0 0 1 α β β

1 1 0 0 0 0 1 1 β β α α

Therefore, we have

                                                    βββα
201212333 )( QclkQQQQQQQQ =⋅⋅⋅+⋅⋅=+ ,                                      (21)

                                        ββββα clkQQQQclkQQQQQQQ ⋅⋅⋅+=⋅⋅+⋅⋅=+ )()( 23110112322 ,                      (22)

                                          ββββα clkQQQQclkQQQQQQ ⋅⋅⋅+=⋅+⋅⋅=+ )()( 2300002311 ,                         (23)

                                                                         ββα clkQQ =+ 00 .                                                               (24)

Based on (2) and (4), (22) and (23) can be re-expressed as

                                                                 ββα ])([ 23122 clkQQQQQ ⋅⋅+=+ ,                                               (25)



                                                                  ββα ])([ 23011 clkQQQQQ ⋅⋅+=+ ,                                               (26)

Obviously, if we take clk3 = Q2 , ])([ 2312 clkQQQclk ⋅⋅+= , ])([ 2301 clkQQQclk ⋅⋅+= and clk0 = clk , the covering

relation will set the excitation functions of all the four flip-flops as ii QD =  (i =0,1,2,3). On the other hand, if we

use the master clock for triggering all four flip-flops, we obtain the following complicated excitation functions:

230123 QQQQQD ⋅+⋅⋅= ,

03130122 QQQQQQQD ⋅+⋅+⋅⋅= ,

0101231 QQQQQQD ⋅+⋅+⋅= ,

00 QD = .

Since the above D3, D2 and D1 have complicated forms their corresponding synchronous circuit realization will

have a complicated combinational circuit with more node capacitance and hence higher power dissipation. On the

other hand, the corresponding asynchronous circuit realization with ii QD = is much simpler. There is power

saving since the four flip-flops are isolated from the triggering clock in the idle cycles.

IV. SYNCHRONOUS DERIVED CLOCK AND ITS APPLICATION

In the Example 1 of the last section we take ββ
0Qclki = , (i =1,2,3). From (12) we can also write β

iclk  as

ββ clkQclki ⋅= 0 , (i =1,2,3). Comparing this with (4), we have 0=ig ,   pi = Q0  and clkQclki ⋅= 0 . According to

this form of the derived clock we get another asynchronous design, as shown in Fig.4(a). At the first glance, the

circuit has one AND gate more than the design in Fig.3(b). Besides, it appears that the derived clock clk1-3 may

have an increased phase delay. However, the timing relation shown in Fig.1 indicates that the transition delay of

clk1-3 is independent of the delay of the Q0 output. The delay between clk and clk1-3 is only 2tg (tg  is the average

delay of a gate), which is less than the delay of the flip-flop output.

Based on the above discussion, we can rewrite clkQclki ⋅= 0  as clkQclki += 0
* . Besides, we take clk  from the

previous stage of the clock tree. Thus, we obtain a new design, as shown in Fig.4(b). If we consider delay of the

Figure 4. BCD  code up-counter by gating clock

(a) asynchronous design, (b) synchronous design



inverter and NOR gate being roughly the same, the falling transitions of clk and *
31−clk in the circuit will occur

simultaneously. This design is synchronous in the sense that all flip-flops are triggered in synchrony with the

global clock.

We simulated the new design in Fig.4(b) by SPICE 3f3 using 2μ CMOS technology, which proved that the new

design has an ideal logic operation. We also measure the power dissipation of two synchronous designs in

Fig.3(a) and Fig.4(b). The power dissipation diagrams are shown in Fig.5, and prove that the new design reduces

the power dissipation by 22%.

V. CONCLUSION

The behavioral description of a clock is the basis to analyze its triggering action on flip-flops. Based on it, two

types of clock-gating were introduced to form a derived clock. We showed that the procedure for designing a

derived clock could be systematized so as to isolate the triggered flip-flop from the master clock in its idle cycles.

The achieved power saving can be significant. However, the additional clock skew may lower the maximum

operation frequency. Based on analyzing the timing relation in clock-gating, we then presented a new technique

for generating the derived clock, which is synchronous with the master clock. Circuit simulation proved the

quality of the new derived  clock and its capability to reduce power dissipation. The engineering issues

mentioned in (3) have thus been resolved for practical application, opening the path for widespread adoption of

the clock-gating technique in low power design of custom ICs.

Figure 5. Power dissipation diagram
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Fig.1 Timing relationship of clk,  pi(gi), pi⋅clk and pi+clk
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Fig 3. Circuit realizations of  BCD  code up-counter (a) synchronous design, (b) asynchronous design
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Fig 4.  BCD  code up-counter by gating clock (a) asynchronous design, (b) synchronous design
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Fig. 5. Power dissipation diagram
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