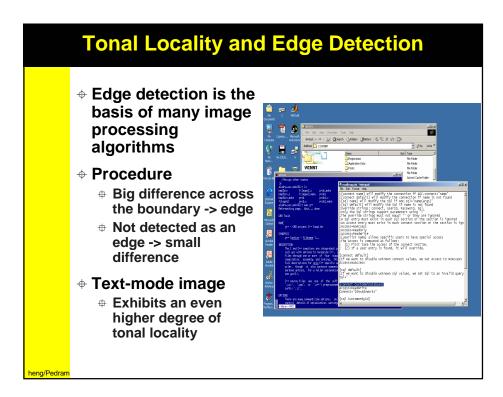
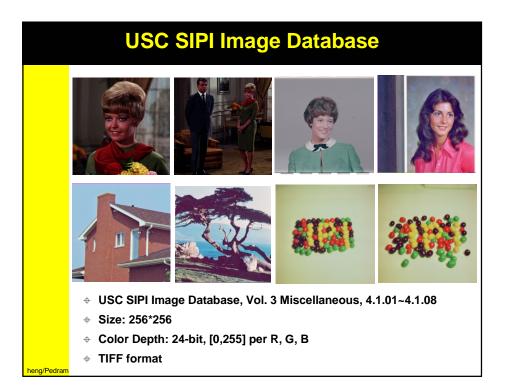
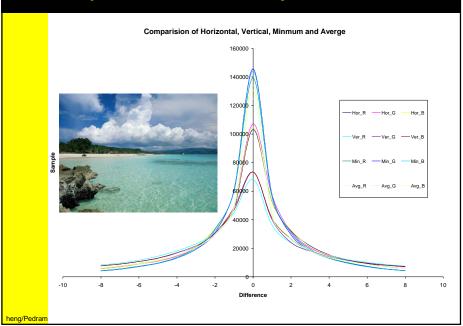
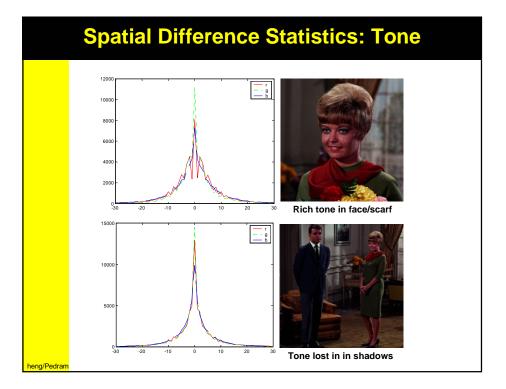
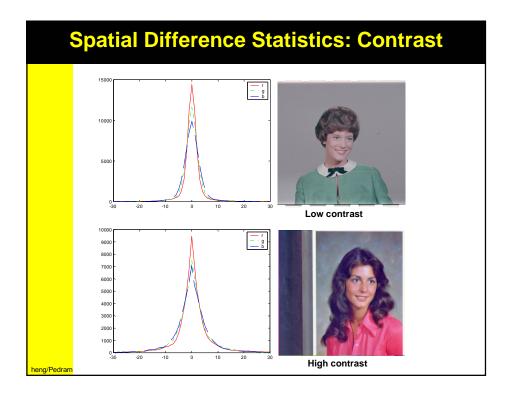

	Outline
	Digital Video Interface Standard
	 ✤ Tonal Locality ⊕ Concept ⊕ Validation
	 Encoding Framework Spatial Encoding Chromatic Encoding Ordered Transition Codes
heng/Pedram	

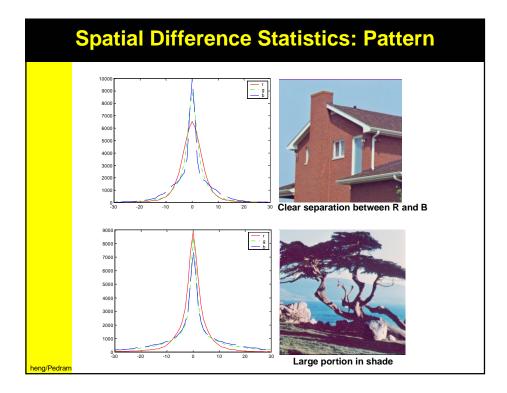


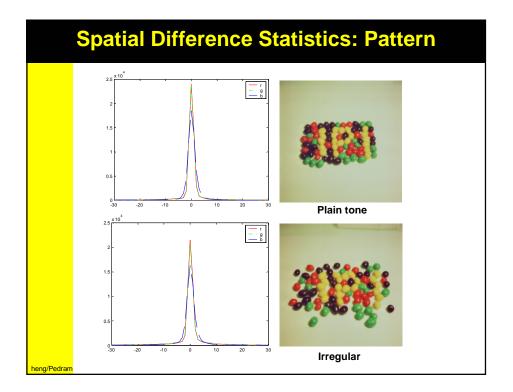

	Digital Video Interface
	 Previous Digital Interfaces VESA Plug and Display, Digital Flat Panel, OpenLDI; Not widely accepted
	 Digital Visual Interface (DVI) Defined by Digital Display Working Group (DDWG) Sponsored by Intel, IBM, Compaq, NEC, HP, Fujitsu Derived from PanelLink from Silicon Image; Version 1.0 released in April 1999
	 Transition Minimized Differential Signaling (TMDS) Current-mode differential signaling
	 Encoding is required to Reduce transitions, correct errors, reduce the DC current, and minimize EMI
heng/Pedram	

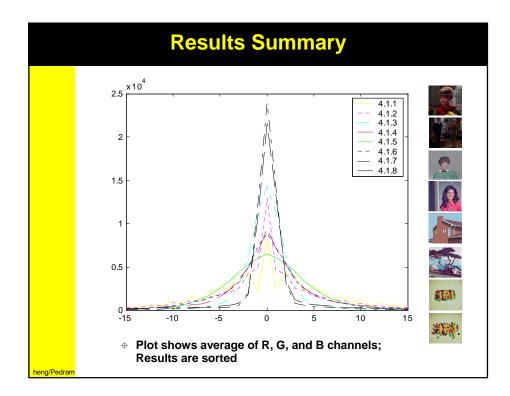





Spa	tial Correlation	Betv	weer	Adj	acei	nt Pi	xels
		R	i	i+1	i+2	i+3	i+4
	Coefficients of	j	1.00	0.97	0.93	0.88	0.84
	Determination	j+1	0.96	0.95	0.91	0.87	0.83
		j+2	0.90	0.90	0.87	0.84	0.81
	 Correlation between 	j+3	0.85	0.84	0.83	0.81	0.78
	neighboring pixels	j+4	0.79	0.79	0.79	0.77	0.75
	Compares pixel(i,j) indication indi	G	i	i+1	i+2	/+3	i+4
	with pixel(i+m,j+n)	j	1.00	0.97	0.92	0.89	0.85
	R G B separately	j+1	0.96	0.95	0.91	0.88	0.85
	·····,	j+2	0.92	0.91	0.89	0.86	0.83
		j+3	0.88	0.87	0.86	0.84	0.82
		j+4	0.84	0.84	0.83	0.81	0.79
		В	i	i+1	i+2	i+3	i+4
		j	1.00	0.95	0.91	0.87	0.83
		j+1	0.95	0.93	0.90	0.86	0.83
		j+2	0.91	0.90	0.87	0.85	0.82
		j+3	0.87	0.86	0.85	0.82	0.80
		j+4	0.84	0.83	0.82	0.80	0.78

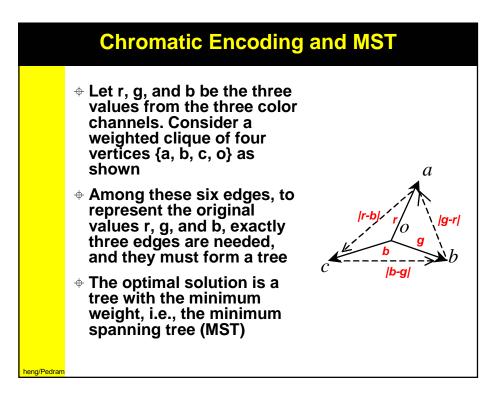

heng/Pedram




Normality of Differences of Adjacent Pixel Values

		0	00	000	
	$\bigcirc ullet$	$\bigcirc ullet$	$\bigcirc ullet$	$\bigcirc ullet$	
	1-way	2-way	3-way	4-way	
4.1.01	11.0130	8.7331	8.2357	8.0786	
4.1.02	12.0754	8.2141	7.0998	7.0313	
4.1.03	6.8144	6.2441	5.3144	5.2100	Residua Error of
4.1.04	15.8660	8.4618	5.8766	5.8178	Multiple Regress
4.1.05	11.0146	8.6054	6.3802	6.2936	Analysis
4.1.06	16.6531	13.5351	11.9507	11.7988	
4.1.07	8.0694	5.8347	4.4617	4.3720	
4.1.08	10.3856	7.7344	5.6498	5.4513	
⊕ Use th	e neighbori	ng pixels (w	hite) to pre	dict the curr	ent pixel (b
+ Run m	ultiple regr	ession analy	sis on the	3 benchmark	c images
+ Predic	tion accura	cy: 1-way <	2-way ~= 3-	way ~= 4-wa	y
				tional to the data of previo	

	Solution Technique Overview
	 Step 1) Spatial encoding is used to code the spatial differences between adjacent pixels in each color channel
	 Step 2) Chromatic encoding is then applied to code the chromatic differences between the color channels resulting in encoded values with the least magnitudes
	 Step 3) Ordered transition codes are exploited to encode the outputs of the previous encoding steps so as to minimize the intra-word switching activities in each DVI channel
	 Steps 1 and 3 produce the energy optimal encoding of a single DVI channel
	 Steps 1 thru 3 provide the energy optimal encoding of all three color channels in a DVI link
heng/Pedram	


Spatial Encoding

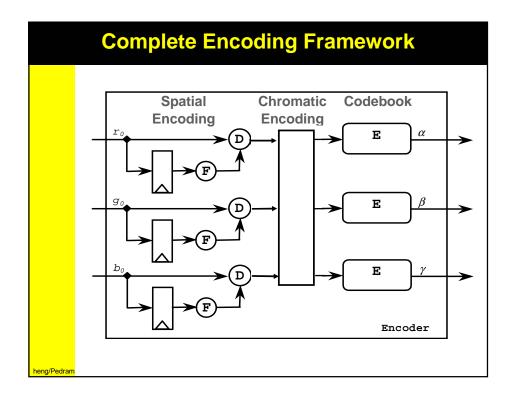
+ For each channel, the spatial encoder

neng/Pedram

- uses a one-way predictor to estimate the present pixel value (a trivial function, F, would predict that the current pixel value is the same as the previous pixel value; this is the one that we use)
- outputs the difference between the actual and the predicted pixel value

 In general, no correlation is 	CorrCoef	(R,G)	(G,B)	(B,R)
found between the color	4.1.01	0.7712	0.9126	0.6819
channels	4.1.02	0.8992	0.9478	0.8040
 We try to send values on the 	4.1.03	0.8579	0.9837	0.9098
color channels that have the	4.1.04	0.6207	0.9274	0.6880
smallest magnitudes,	4.1.05	0.6378	0.9418	0.4823
because this will result in the	4.1.06	0.0583	0.9736	0.0689
minimum intra- word activity in	4.1.07	0.7016	0.8519	0.6478
each channel	4.1.08	0.6766	0.8481	0.6297

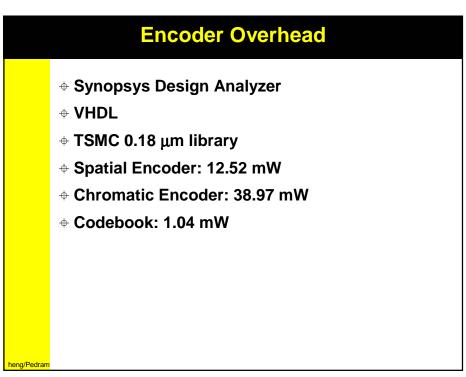
#	Ranking	Encoding				Decoding			
#	5	α	β	γ	$Z_0 Z_1 Z_2$	if sign()	r	g	b
1	0 < r < g < b; $b < g < r < 0$	r	g-r	g-b	100	$\alpha = \beta$	α	$\alpha + \beta$	$\alpha + \beta$
2	0 < r < b < g; g < b < r < 0	r	b-g	b-r	100	α=γ	α	$\alpha + \gamma - \beta$	α+′
3	0 < g < b < r; r < b < g < 0	b-r	g	b-g	010	β=γ	$\beta + \gamma - \alpha$	β	β +'
4	0 < g < r < b; $b < r < g < 0$	r-g	g	r-b	010	β=α	$\beta + \alpha$	β	$\beta + \alpha$
5	0 < b < r < g; g < r < b < 0	r-b	r-g	b	001	γ=α	γ+α	$\gamma + \alpha - \beta$	γ
6	0 < b < g < r; r < g < b < 0	g-r	g-b	b	001	$\gamma = \beta$	$\gamma + \beta - \alpha$	$\gamma + \beta$	γ
7	b < 0 < g < r; r < g < 0 < b	r-g	g	b	011	$\alpha = \beta$	$\beta + \alpha$	β	γ
8	g < 0 < b < r; r < b < 0 < g	r-b	g	b	011	α=γ	γ+α	β	γ
9	r < 0 < b < g, g < b < 0 < r	r	g-b	b	101	β=γ	α	β+γ	γ
10	b < 0 < r < g, g < r < 0 < b	r	g-r	b	101	β=α	α	$\beta + \alpha$	γ
11	g < 0 < r < b; $b < r < 0 < g$	r	g	b-r	110	γ=α	α	β	γ+α
12	r < 0 < g < b; $b < g < 0 < r$	r	g	b-g	110	$\gamma = \beta$	α	β	γ+/
13	overflow	r_0	g 0	b_0	000	-	α	β	γ
14	overflow	$TM(r_0)$	$TM(g_0)$	$TM(b_0)$	111	-	$TM(\alpha)$	$TM(\beta)$	TM(
	Type 1: 0 < x < y	~ < z	⇔ Ту	√ pe 3: z <	∖∕√ < y < x	∼ < 0	Z=10	00, 010, 0	001
	Type 2: x < 0 < y	< z	↔ Ty	/ pe 4: z <	√ √√ < y < 0	< x	Z=1'	10, 011, 1	01



If the difference encoding is used, the total transition count can be written in terms of the signal differences
 x': 255

$$T = \sum_{x=-255}^{255} p(x')w(g(x'))$$

- ⊕ p(x'), which follows a Gaussian distribution, has the property that $p(x) \le p(y)$ if |x| > |y|. The optimal code assignment will be any function g that satisfies w(g(x)) ≤ w(g(y)) if |x| < |y|. Functions in this class are called ordered transition codes
- The code assignment is generated as a two-column lookup table. In the first column, all of the sourcewords, *x*, are sorted in increasing order of their magnitudes. In the second column, all of the codewords, *e(x)*, (i.e., E[7..0] bits) are sorted in decreasing order of their intra-transition counts.


neng/Pedram

Experimental Results: Images

			Spatial	Spatial+	Overflow		
				Chromatic			
		4.1.01	46.03%	54.36%	0		
		4.1.02	44.60%	54.70%	6		ALC: N
		4.1.03	64.57%	72.83%	1		
		4.1.04	50.72%	60.83%	241		
		4.1.05	55.73%	62.96%	2		1 HE
		4.1.06	48.35%	57.61%	80		
		4.1.07	67.73%	73.20%	0		E.S.
		4.1.08	63.74%	69.98%	0		
		n both	cases,	we use OT	С		STEN)
	+ r	n case eplace	2, E[8] i d with t	in each co he corres	lor chanr conding Z	nel is Z value	ALA.
heng/Pedram							

Clip name	wg	tiger	final3
Source type	clay animation	camcorder	anime
Frame number	331	634	1018
Frame size	304*224	320*240	160*128
Spatial	57.17%	38.89%	49.56%
Spatial+Chromatic	75.55%	64.47%	73.63%

	Conclusions
	 Proposed chromatic encoding for the DVI, a digital serial video interface
	 Introduced tonal locality, the notion that the signal differences between adjacent pixels follow a Gaussian distribution
	 Proved that spatial plus chromatic encoding reduces power consumption by minimizing the transition count on the DVI
	 The proposed technique requires only three redundant bits for each 24-bit pixel, which are readily available
	 Experimental results show up to a 75% transition reduction in the DVI
heng/Pedram	