Buffered Routing Tree
Construction under Buffer
Placement Blockages

—_—-

Wei Chen, Massoud Pedram
Dept. EE — Systems
Univ. of Southern California
Premal Buch
Magma Design Automation

Outline

Introduction

% Delay Models and Data Structures
Algorithm

Complexity Analysis

Experimental Results

Conclusions

Previous Work

Insert buffers into a pre-determined net
topology
+ Van Ginneken '90

Insert buffers while generating the net
topology (using a set of buffer stations)
Two-pin nets: Zhou '99, Jagannathan 00
Multi-pin nets: Cong '00

Motivation

Placement blockages in the circuit restrict the
areas on the chip where the buffers can be
placed

These blockages are easily determined after
the global placement

J °

@ Sink m Source |:| Blockage

Solution |

% Conventional flow
Build the Steiner Tree first and then insert buffers

+ There may be no opportunity to insert buffers due
to placement blockages

J -

® Sink W Source |:| Blockage

Solution 11

% Alternative Flow

+ Force the global router to go around all the
blockages and then insert buffers

+ This scheme tends to insert too many buffers

!

® Sink W Source |:| Blockage

Problem Definition

Given (1) a set of placement blockages,
where routing is allowed but no buffers can
be placed, and (2) locations of the source pin
and the sink pins of a net, simultaneously
build the net topology and insert sized
buffers/inverters at places where they are
permitted to maximize the required time at
the source

Delay Models

% Buffer delay: o=r /p+gh)
* p: parasitic delay
* g logical effort
+ h: electrical effort or gain
Interconnect delay: d,=r, /0.5¢,+C)
* r,: wire resistance
¢, . wire capacitance
* C: capacitive load

Hanan Grid Graph

Iteratively enlarge the boundary of the Hanan
graph to include the source pin, the sink pins,
and the corner points of the blockages

[Construct the MBB]

—

[Enlarge the MBB to cover BIockages]

—

[Put in the Hanan Points]

—

[Construct the Hanan Grid]

Key Data Structures

Solution
+ Root node: root
+ Capacitive load: cap
+ Required time: req
+ Reachable set: reachable set
+ Repeater type and size: repeater

Priority queue

+ The solution that is ejected from the queue is one
with the maximum required time (i.e. the least
critical solution)

Initializing the Base Solutions

Sink node p:
+ sol(p, cap, req, {p}, O}
Source node p or Hanan point p.
+ If the location does not allow a buffer, then
sol(p, 0, +e, {p}, O}
+ Otherwise
soll(p, O, +co, {p}, O}
sol2(p, 0, +co, {p,}, {buffer,0}}
sol3(p, 0, +, {p,}, {inverter,0}}

Destination Nodes

% Eject a solution from the queue

Expand it using line probes;
Stop expansion if we reach:

(a) The source or a sink node

(b) A Hanan point formed by two
lines passing through the source

and a sink node;

(c) A Hanan point that is not covered

(b

A

by a blockage covering the root

? (C)

(d) The first unblocked Hanan point Y

after the probe line extends
beyond the blockages

©

How to Combine Solutions

When a current solution arrives at its
destination node, combine it with any solution
that is rooted there and has a reachable set
that does not share a node with reachable set
of the current solution

Insert the new solution into the priority
queve [
g
{reach 7.\99!1 reachj&etz

soll, sol2, sol3,.).f
N\

AN
Y Y

reach_setinreach_setz® reach _setinreach _set=@

Data Member of a High Level Solution

% Root :is the destination node

% reachable_set : union of the reachable sets of
the two child solutions

% cap, req : as is done in previous works

#® Repeater : the repeater that is placed at the
root node

Long Edge Buffering

Because of the existence of long edges in the
Hanan grid, buffer insertion should not be
limited to the Hanan points

Split a long edge into a set of segments

% Buffer the segments
hat L |

o«

Pruning Operation

For solutions so/I and so/2, which are rooted
at the same node and have the same sink pin
set, if reql < req2 and capl = cap2, then sol/1
IS inferior to so/2

Optimal pruning: Delete the inferior solutions

Non-optimal pruning: Delete non-inferior
solutions that are sufficiently close to other
unpruned solutions in order to reduce the
problem size

Pruning Cases

When buffering a long edge
+ Prune after a fixed number of segments are
processed
When combining a solution with the solutions
rooted at its destination node
+ Delete the inferior solutions

Only non-dominated solutions are injected
into the priority queue

Heuristic to Reduce the Problem Size

When a solution reaches the source pin, all
other solutions with the same sink pin set are
removed
+ Reduces the problem size
+ Improves the net topology

X

req a>>req b

Algorithm Flow

| Build the Hanan Grid | -{Combine solutions
1 &

[Initialize base solutions Prune solutions

Eject a solution Inject new solutions I

Expand to its
destination nodes
(buffer/prune on edges)

i

Priority

Complexity Analysis

#* Assume NV*M Hanan grid, 77 sinks

Space complexity
= O(NMR2"K)
+ K:Keep at most K solutions after pruning
#* Time Complexity
7 O(N2M?2"[K)
= At most NV*M steps are needed to propagate a
solution to the source
+ Never revisit an edge for any solution

10

Experimental Results

7]|& Critical Path
710 Median Slack

Cell

Examl

8087

Exam2

38127

Exam3

62187

Exam4

767982

OFR NMNWHMOUITO NOWWOO
T S R

(Y
@@& @@“@ 9@6\3 o

Conclusions

Proposed an algorithm for concurrent global
routing and buffer insertion in the presence

of placement blockages

Used line probe-based maze routing and
solution pruning to speed up the algorithm

and reduce the problem size

Results on four industrial circuits show 6-10%

reduction in the circuit delay

11

