
1

Buffered Routing Tree
Construction under Buffer

Placement Blockages

Wei Chen, Massoud Pedram
Dept. EE – Systems

Univ. of Southern California
Premal Buch

Magma Design Automation

Outline

Introduction
Delay Models and Data Structures
Algorithm
Complexity Analysis
Experimental Results
Conclusions

2

Previous Work

Insert buffers into a pre-determined net
topology

Van Ginneken ’90

Insert buffers while generating the net
topology (using a set of buffer stations)

Two-pin nets: Zhou ’99, Jagannathan ’00
Multi-pin nets: Cong ’00

Motivation

Placement blockages in the circuit restrict the
areas on the chip where the buffers can be
placed
These blockages are easily determined after
the global placement

BlockageSink Source

3

Solution I

Conventional flow
Build the Steiner Tree first and then insert buffers
There may be no opportunity to insert buffers due
to placement blockages

BlockageSink Source

Solution II

Alternative Flow
Force the global router to go around all the
blockages and then insert buffers
This scheme tends to insert too many buffers

BlockageSink Source

4

Problem Definition

Given (1) a set of placement blockages,
where routing is allowed but no buffers can
be placed, and (2) locations of the source pin
and the sink pins of a net, simultaneously
build the net topology and insert sized
buffers/inverters at places where they are
permitted to maximize the required time at
the source

Delay Models

Buffer delay: d=τ ⋅(p+gh)
p : parasitic delay
g : logical effort
h : electrical effort or gain

Interconnect delay: dw=rw⋅(0.5cw+C)
rw : wire resistance
cw : wire capacitance
C : capacitive load

5

Construct the MBB

Hanan Grid Graph

Iteratively enlarge the boundary of the Hanan
graph to include the source pin, the sink pins,
and the corner points of the blockages

Enlarge the MBB to cover Blockages

Put in the Hanan Points

Construct the Hanan Grid

Key Data Structures

Solution
Root node: root
Capacitive load: cap
Required time: req
Reachable set: reachable_set
Repeater type and size: repeater

Priority queue
The solution that is ejected from the queue is one
with the maximum required time (i.e. the least
critical solution)

6

Initializing the Base Solutions

Sink node p:
sol(p, cap, req, {p}, 0}

Source node p or Hanan point p:
If the location does not allow a buffer, then
sol(p, 0, +∞, {p}, 0}
Otherwise
sol1(p, 0, +∞, {p}, 0}
sol2(p, 0, +∞, {p,}, {buffer,0}}
sol3(p, 0, +∞, {p,}, {inverter,0}}

Destination Nodes

Eject a solution from the queue
Expand it using line probes;
Stop expansion if we reach:
(a) The source or a sink node
(b) A Hanan point formed by two

lines passing through the source
and a sink node;

(c) A Hanan point that is not covered
by a blockage covering the root

(d) The first unblocked Hanan point
after the probe line extends
beyond the blockages

(b)
(c)

(c)
(d)

7

reach_seti∩reach_set≠Φ reach_seti∩reach_set=Φ

How to Combine Solutions

When a current solution arrives at its
destination node, combine it with any solution
that is rooted there and has a reachable set
that does not share a node with reachable set
of the current solution
Insert the new solution into the priority
queue

sol:
reach_set

reach_set1 reach_set2 …… reach_setn

sol1, sol2, sol3,……,soli,soli+1,…… ,soln

Data Member of a High Level Solution

Root : is the destination node
reachable_set : union of the reachable sets of
the two child solutions
cap, req : as is done in previous works
Repeater : the repeater that is placed at the
root node

8

Long Edge Buffering

Because of the existence of long edges in the
Hanan grid, buffer insertion should not be
limited to the Hanan points
Split a long edge into a set of segments
Buffer the segments

LLL

solsol11

sol12

sol13

sol21

sol22
……

sol2p

solm1

solm2
……

solmn

Pruning Operation

For solutions sol1 and sol2, which are rooted
at the same node and have the same sink pin
set, if req1 ≤ req2 and cap1 ≥ cap2, then sol1
is inferior to sol2
Optimal pruning: Delete the inferior solutions
Non-optimal pruning: Delete non-inferior
solutions that are sufficiently close to other
unpruned solutions in order to reduce the
problem size

9

Pruning Cases

When buffering a long edge
Prune after a fixed number of segments are
processed

When combining a solution with the solutions
rooted at its destination node

Delete the inferior solutions

Only non-dominated solutions are injected
into the priority queue

Heuristic to Reduce the Problem Size

When a solution reaches the source pin, all
other solutions with the same sink pin set are
removed

Reduces the problem size
Improves the net topology

a

b
req_a>>req_b

10

Algorithm Flow

Build the Hanan Grid

Initialize base solutions

Eject a solution

Expand to its
destination nodes

(buffer/prune on edges)

Combine solutions

Prune solutions

Inject new solutions

Priority
queue empty?

End

Yes

No

Complexity Analysis

Assume N*M Hanan grid, n sinks
Space complexity

O(N⋅M⋅2n⋅K)
K: Keep at most K solutions after pruning

Time Complexity
O(N2⋅M2⋅2n⋅K)
At most N*M steps are needed to propagate a
solution to the source
Never revisit an edge for any solution

11

Experimental Results

0
1
2
3
4
5
6
7
8
9

10

Exam
1

Exam
2

Exam
3

Exam
4

Critical Path
Median Slack

8087Exam1

767982Exam4

62187Exam3

38127Exam2

Cell

Conclusions

Proposed an algorithm for concurrent global
routing and buffer insertion in the presence
of placement blockages
Used line probe-based maze routing and
solution pruning to speed up the algorithm
and reduce the problem size
Results on four industrial circuits show 6-10%
reduction in the circuit delay

