Dynamic Voltage and Frequency Scaling based on Workload Decomposition

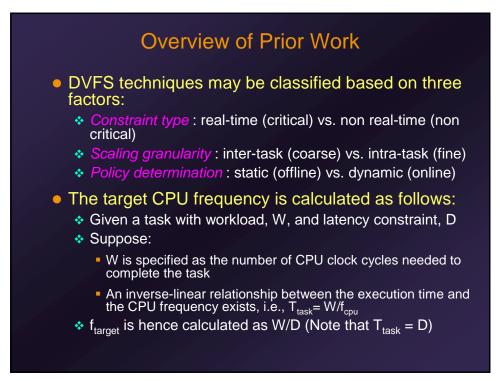
> Kihwan Choi Ramakrishna Soma Massoud Pedram

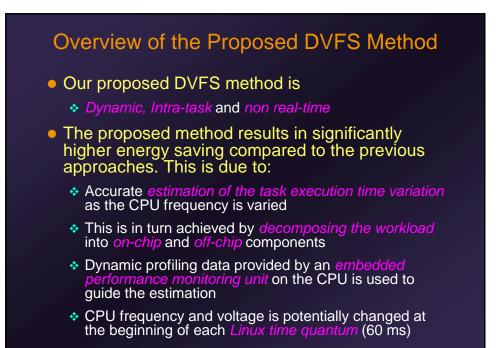
Dept. of EE University of Southern California

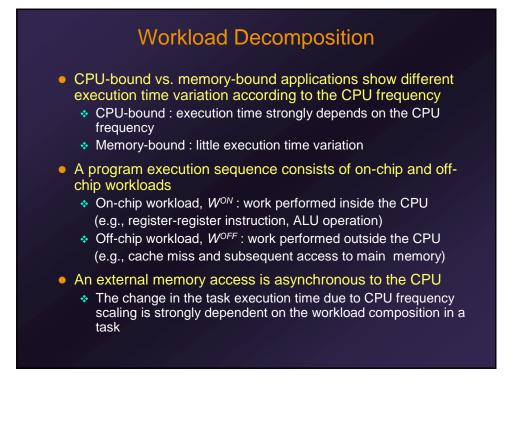
Outline

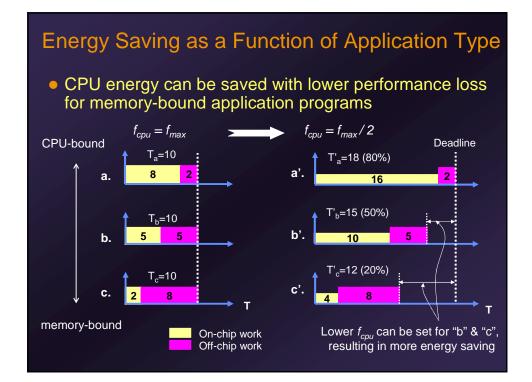
- Background
- Workload Decomposition
- PXA255's Performance Monitoring Unit
- Fine-grained DVFS Policy for BitsyX
- Experimental Results
- Conclusions

Background on DVFS

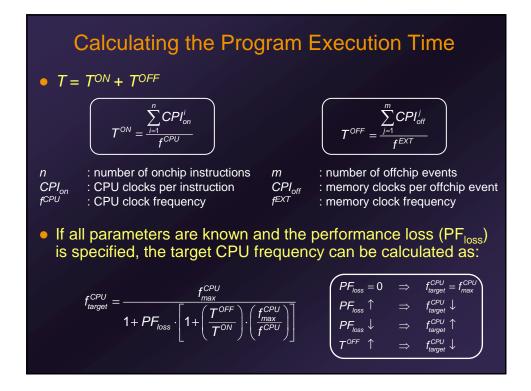

- DVFS is a method through which variable amount of energy is allocated to perform a task
- Power consumption of a digital CMOS circuit is:


 $P = \alpha \cdot C_{\text{eff}} \cdot V^2 \cdot f$ $\alpha : \text{switching factor}$ $C_{\text{eff}} : \text{effective capacitance}$ V : operating voltage f : operating frequency


Energy required to run a task during T is:

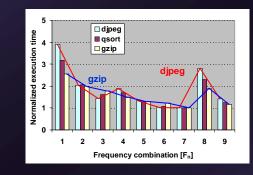

 $\mathbf{E} = \mathbf{P} \cdot \mathbf{T} \propto \mathbf{V}^2 \qquad (\text{assuming } f \propto V, \ \mathbf{T} \propto f^{-1})$

 Lowering V (while simultaneously and proportionately cutting f) causes a quadratic reduction in E



Components of the Program Execution Time
 The amount of CPU and memory workloads for an application program must be determined
 Execution time of a program is the sum of the On- chip (CPU work) and the Off-chip Latency (memory work) T = T^{ON} + T^{OFF}
 <i>T</i>^{ON} : varies with the CPU frequency Cache hit Stall due to data dependency TLB hit,
 <i>T</i>^{OFF}: is invariant with the CPU frequency Access to external memory such as SDRAM and frame buffer memory, which is in turn due to a cache miss

	Performance Monitoring Unit (PMU)
•	 PMU on the PXA255 processor chip can report up to 15 different dynamic events during execution of a program Cache hit/miss counts, TLB hit/miss counts, No. of stall cycles, Total no. of instructions being executed, Branch misprediction counts
•	Only two events can be monitored and reported at any given time
•	 For DVFS, we use the PMU to generate statistics for Total no. of instructions being executed (INSTR) No. of stall cycles due to on-chip or off-chip data dependencies (STALL) No. of Data Cache misses (DMISS)
•	We also record the no. of clock cycles from the beginning of the program execution (CCNT)
•	From these parameters, we can calculate the average on-chip CPI


Frequency Settings in BitsyX

- PXA255 can operate from 100MHz to 400MHz, with a core supply voltage of 0.85V to 1.3V
- Nine frequency combinations (f CPU, f INT, f EXT)
- Internal bus connects the core and other functional blocks inside the CPU Ö

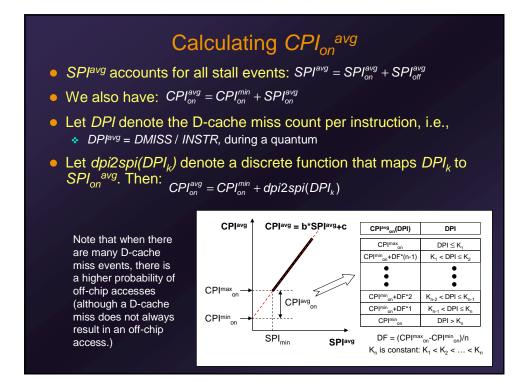
External bus	s is coi	nnected	to SDRAM	l (64MB)	
	Freq.	CPU	Internal bus	External bus	
	Set	(MHz)	(MHz)	(MHz)	
	F ₁	100	50	100	
	F ₂	200	50	100	
	F ₃	300	50	100	
	F ₄	200	100	100	
	F_5	300	100	100	
	F ₆	400	100	100	
	F ₇	400	200	100	Highest Performance Se
	F ₈	133	66	133	
	F ₉	265	133	133	

Execution Time and Frequency Settings

- Execution time variation over different frequency combinations "djpeg", "qsort", and "gzip"
 - "djpeg" is CPU-bound (strongly dependent on f CPU)
 - "gzip" is memory-bound (f^{INT} & f^{EXT} dependent)

Freq. Set	CPU (MHz)	Internal bus (MHz)	External bus
	(IVIHZ)	(MHZ)	(MHz)
F ₁	100	50	100
F_2	200	50	100
F_3	300	50	100
F ₄	200	100	100
F ₅	300	100	100
F_6	400	100	100
F ₇	400	200	100
F ₈	133	66	133
F ₉	265	133	133


tting


Modeling the Execution Time in BitsyX

- T^{OFF} is strongly dependent on the f ^{EXT}. However, f ^{INT} also affects T^{OFF}
- Example: when a D-cache miss occurs, two operations are performed:
 - Data fetch from the external memory (f^{EXT})
 - Data transfer to the CPU core where the cache-line and destination register are updated (f ^{INT})
- Due to lack of exact timing information, we have opted to model TOFF as:

$$T^{OFF} = \frac{\alpha \cdot W^{OFF}}{f^{INT}} + \frac{(1-\alpha) \cdot W^{OFI}}{f^{EXT}}$$

An α value of ~0.35 was obtained for tested applications
 The error in predicting the execution time was less than 3% for all nine frequency settings

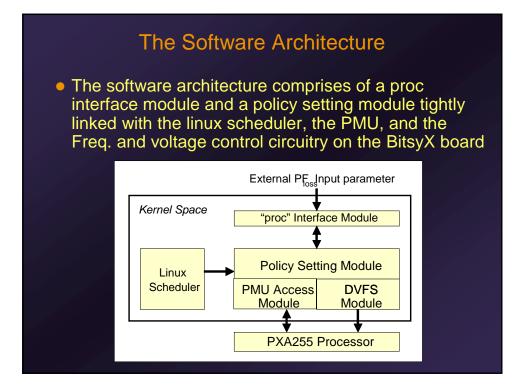
Determining the Optimal Frequency Setting

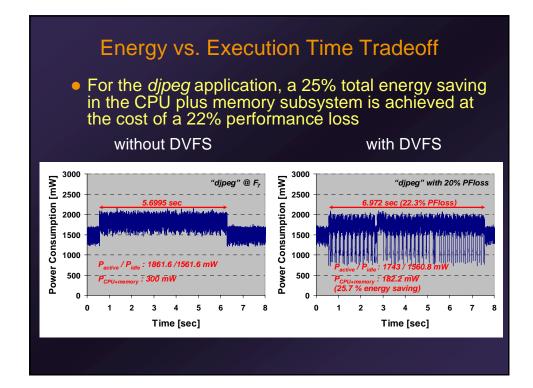
• After calculating *CPI*_{on}^{avg} for the current quantum, *i*, the on-chip and off-chip execution times are calculated as follows:

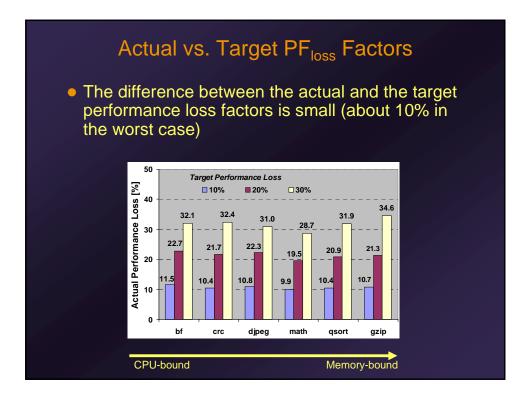
$$T_{i}^{ON} = \frac{N_{i} \cdot CPI_{on,i}^{avg}}{f_{i}^{CPU}} \qquad T_{i}^{OFF} = T_{i} - T_{i}^{ON}$$

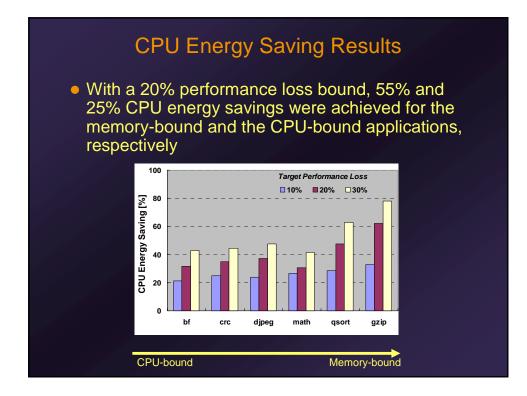
• Next we choose a frequency setting for the quantum i+1, F^{opt}_{i+1} , that satisfies the following equation :

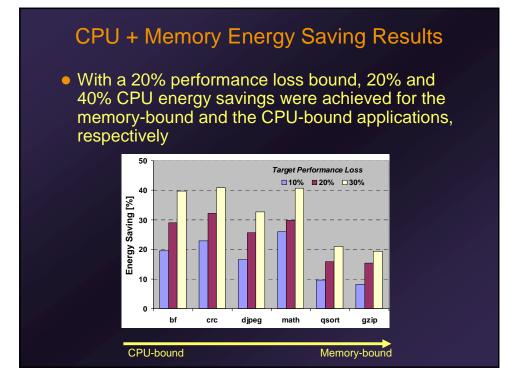
$$T_{F_{i+1}^{opt}}^{i+1} \leq (1 + PF_{loss}) \cdot T_{F_{min}}^{i}$$


 $T_{F^{opt}}^{i+1}$: The expected execution time of quantum i+1 at F^{opt}_{i+1}


 $T_{F_{max}}^{i}$: The execution time of quantum i at F_{max}


The BitsyX Platform


 The ADS's BitsyX board has a PXA255 microprocessor which is a 32-bit RISC processor core, with a 32KB instruction cache and a 32KB write-back data cache, a 2KB mini-cache, a write buffer, and a memory management unit (MMU) combined in a single chip



Conclusions

- A fine-grained DVFS technique based on online decomposition of the application workload into on-chip and off-chip components was presented
- Based on actual current measurements in the BitsyX platform
 - For memory-bound programs, an average of 70% PXA255 energy savings was achieved with 30% performance degradation
 - For CPU-bound programs, an average of 40% PXA255 energy savings was achieved at the cost of 30% performance penalty
- Future work will consider the impact of the DVFS on the total system energy consumption