
1

Dynamic Voltage and Frequency Scaling
based on Workload Decomposition

Kihwan Choi
Ramakrishna Soma
Massoud Pedram

Dept. of EE
University of Southern California

! Background

! Workload Decomposition

! PXA255’s Performance Monitoring Unit

! Fine-grained DVFS Policy for BitsyX

! Experimental Results

! Conclusions

Outline

2

! DVFS is a method through which variable amount of
energy is allocated to perform a task

! Power consumption of a digital CMOS circuit is:

! Energy required to run a task during T is:

! Lowering V (while simultaneously and proportionately
cutting f) causes a quadratic reduction in E

α= ⋅ ⋅ ⋅2
effP C V f

α : switching factor
Ceff : effective capacitance
V : operating voltage
f : operating frequency

= ⋅ ∝ 2E P T V (assuming f ∝ V, T ∝ f –1)

Background on DVFS

! DVFS techniques may be classified based on three
factors:
" Constraint type : real-time (critical) vs. non real-time (non

critical)
" Scaling granularity : inter-task (coarse) vs. intra-task (fine)
" Policy determination : static (offline) vs. dynamic (online)

! The target CPU frequency is calculated as follows:
" Given a task with workload, W, and latency constraint, D
" Suppose:

W is specified as the number of CPU clock cycles needed to
complete the task

An inverse-linear relationship between the execution time and
the CPU frequency exists, i.e., Ttask= W/fcpu

" ftarget is hence calculated as W/D (Note that Ttask = D)

Overview of Prior Work

3

! Our proposed DVFS method is
" Dynamic, Intra-task and non real-time

! The proposed method results in significantly
higher energy saving compared to the previous
approaches. This is due to:
" Accurate estimation of the task execution time variation

as the CPU frequency is varied

" This is in turn achieved by decomposing the workload
into on-chip and off-chip components

" Dynamic profiling data provided by an embedded
performance monitoring unit on the CPU is used to
guide the estimation

" CPU frequency and voltage is potentially changed at
the beginning of each Linux time quantum (60 ms)

Overview of the Proposed DVFS Method

Workload Decomposition

! CPU-bound vs. memory-bound applications show different
execution time variation according to the CPU frequency
" CPU-bound : execution time strongly depends on the CPU

frequency
" Memory-bound : little execution time variation

! A program execution sequence consists of on-chip and off-
chip workloads
" On-chip workload, WON : work performed inside the CPU

(e.g., register-register instruction, ALU operation)
" Off-chip workload, WOFF : work performed outside the CPU

(e.g., cache miss and subsequent access to main memory)

! An external memory access is asynchronous to the CPU
" The change in the task execution time due to CPU frequency

scaling is strongly dependent on the workload composition in a
task

4

Energy Saving as a Function of Application Type

! CPU energy can be saved with lower performance loss
for memory-bound application programs

5 5

2 8

8 2

T

fcpu = fmax / 2

10 5

4 8

16 2

T

a.

b.

c.

Tb=10

Ta=10

Tc=10

T’b=15 (50%)

T’a=18 (80%)

T’c=12 (20%)

On-chip work
Off-chip work

fcpu = fmax

a’.

b’.

c’.

CPU-bound

memory-bound

Deadline

Lower fcpu can be set for “b” & “c”,
resulting in more energy saving

Components of the Program Execution Time

! The amount of CPU and memory workloads for
an application program must be determined

! Execution time of a program is the sum of the On-
chip (CPU work) and the Off-chip Latency
(memory work)
" T = TON + TOFF

! TON : varies with the CPU frequency
" Cache hit
" Stall due to data dependency
" TLB hit, …

! TOFF: is invariant with the CPU frequency
" Access to external memory such as SDRAM and frame

buffer memory, which is in turn due to a cache miss

5

Calculating the Program Execution Time

! T = TON + TOFF

! If all parameters are known and the performance loss (PFloss)
is specified, the target CPU frequency can be calculated as:

==
∑

1

n
i
on

ON i
CPU

CPI
T

f
==
∑

1

m
j

off
jOFF

EXT

CPI

T
f

n : number of onchip instructions
CPIon : CPU clocks per instruction
fCPU : CPU clock frequency

m : number of offchip events
CPIoff : memory clocks per offchip event
fEXT : memory clock frequency

=

+ ⋅ + ⋅

1 1

CPU
CPU max

target CPUOFF
max

loss ON CPU

f
f

fT
PF

T f

= ⇒ =

↑ ⇒ ↓

↓ ⇒ ↑

↑ ⇒ ↓

0

CPU CPU
loss target max

CPU
loss target

CPU
loss target

OFF CPU
target

PF f f

PF f

PF f

T f

Performance Monitoring Unit (PMU)

! PMU on the PXA255 processor chip can report up to 15
different dynamic events during execution of a program
" Cache hit/miss counts, TLB hit/miss counts, No. of stall cycles,

Total no. of instructions being executed, Branch misprediction
counts

! Only two events can be monitored and reported at any given
time

! For DVFS, we use the PMU to generate statistics for
" Total no. of instructions being executed (INSTR)
" No. of stall cycles due to on-chip or off-chip data dependencies

(STALL)
" No. of Data Cache misses (DMISS)

! We also record the no. of clock cycles from the beginning of
the program execution (CCNT)

! From these parameters, we can calculate the average on-chip
CPI

6

Frequency Settings in BitsyX
! PXA255 can operate from 100MHz to 400MHz, with a core supply

voltage of 0.85V to 1.3V

! Nine frequency combinations (f CPU, f INT, f EXT)

! Internal bus connects the core and other functional blocks inside
the CPU

! External bus is connected to SDRAM (64MB)

13366133F8

100200400F7

10050100F1

10050200F2

10050300F3

100100200F4

100100300F5

100100400F6

133133265F9

Freq.
Set

Internal bus

(MHz)

External bus

(MHz)

CPU

(MHz)

Highest Performance Setting

Execution Time and Frequency Settings

! Execution time variation over different frequency
combinations - “djpeg”, “qsort”, and “gzip”
" “djpeg” is CPU-bound (strongly dependent on f CPU)
" “gzip” is memory-bound (f INT & f EXT dependent)

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9

Frequency combination [Fn]

N
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 t
im

e djpeg
qsort
gzip

13366133F8

100200400F7

10050100F1

10050200F2

10050300F3

100100200F4

100100300F5

100100400F6

133133265F9

Freq.
Set

Internal bus

(MHz)

External
bus

(MHz)

CPU

(MHz)

djpeg
gzip

7

Modeling the Execution Time in BitsyX

! TOFF is strongly dependent on the f EXT. However, f INT also
affects TOFF

! Example: when a D-cache miss occurs, two operations
are performed:
" Data fetch from the external memory (f EXT)
" Data transfer to the CPU core where the cache-line and

destination register are updated (f INT)

! Due to lack of exact timing information, we have opted to
model TOFF as:

! An α value of ~0.35 was obtained for tested applications
" The error in predicting the execution time was less than 3%

for all nine frequency settings

α α⋅ − ⋅= + (1)OFF OFF
OFF

INT EXT

W W
T

f f

Plot of CPI vs. SPI

! We define SPI as ratio of the number of stall cycles to the total
instruction count
" CPIavg = CCNT / INSTR, during a time quantum
" SPIavg = STALL / INSTR, during a time quantum

! A regression equation is used to model the CPIavg vs. SPIavg

relation:

! The intercept c produces the average on-chip CPI without any
stall cycles,

0

2

4

6

8

10

12

0 2 4 6 8 10

SPI avg

C
P

Iav
g

(a) gzip

0

2

4

6

8

10

12

0 2 4 6 8 10

SPI avg

C
P

Iav
g

(a) gzip

0

1

2

3

4

0 0.5 1 1.5 2

SPI avg

C
P

Iav
g

(b) djpeg

0

1

2

3

4

0 0.5 1 1.5 2

SPI avg

C
P

Iav
g

(b) djpeg

CPIavg = b*SPIavg + c

min
onCPI

8

Calculating CPIon
avg

! SPIavg accounts for all stall events:

! We also have:

! Let DPI denote the D-cache miss count per instruction, i.e.,
" DPIavg = DMISS / INSTR, during a quantum

! Let dpi2spi(DPIk) denote a discrete function that maps DPIk to
SPIon

avg. Then:

SPIavg

CPIavg

CPImin
on

SPImin

CPImax
on

CPImin
on+DF*(n-1)

Kn is constant: K1 < K2 < … < Kn

CPIavg = b*SPIavg+c

CPImax
on

CPImin
on

CPImin
on+DF*1

CPImin
on+DF*2

DPI ≤ K1

CPIavg
on(DPI) DPI

K1 < DPI ≤ K2

Kn-2 < DPI ≤ Kn-1

Kn-1 < DPI ≤ Kn

DPI > Kn

DF = (CPImax
on-CPImin

on)/n

CPIavg
on

= +avg avg avg
on offSPI SPI SPI

= +avg min avg
on on onCPI CPI SPI

= + 2 ()avg min
on on kCPI CPI dpi spi DPI

Note that when there
are many D-cache
miss events, there is
a higher probability of
off-chip accesses
(although a D-cache
miss does not always
result in an off-chip
access.)

Determining the Optimal Frequency Setting

! After calculating CPIon
avg for the current quantum,

i, the on-chip and off-chip execution times are
calculated as follows:

! Next we choose a frequency setting for the
quantum i+1, Fopt

i+1, that satisfies the following
equation :

≤ + ⋅(1)opt
maxi+1

i+1 i
loss FF

T PF T

⋅
= ,

avg
i on iON

i CPU
i

N CPI
T

f
= −OFF ON

i i iT T T

opt
i+1

i+1
F

T

max

i
FT

: The expected execution time of quantum i+1 at Fopt
i+1

: The execution time of quantum i at Fmax

9

The BitsyX Platform

! The ADS’s BitsyX board has a PXA255 microprocessor
which is a 32-bit RISC processor core, with a 32KB
instruction cache and a 32KB write-back data cache, a
2KB mini-cache, a write buffer, and a memory
management unit (MMU) combined in a single chip

The Software Architecture

“proc” Interface Module

Linux
Scheduler

Policy Setting Module

PMU Access
Module

DVFS
Module

Kernel Space

DVFS

PXA255 Processor

External PFlossInput parameter

! The software architecture comprises of a proc
interface module and a policy setting module tightly
linked with the linux scheduler, the PMU, and the
Freq. and voltage control circuitry on the BitsyX board

10

Energy vs. Execution Time Tradeoff

with DVFSwithout DVFS

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5 6 7 8

Time [sec]

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 [

m
W

]

5.6995 sec

“djpeg” @ F7

Pactive / Pidle : 1861.6 /1561.6 mW

PCPU+memory : 300 mW

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5 6 7 8

Time [sec]

P
o

w
er

 C
o

n
su

m
p

ti
o

n
 [

m
W

]

6.972 sec (22.3% PFloss)

“djpeg” with 20% PFloss

Pactive / Pidle : 1743 / 1560.8 mW

PCPU+memory : 182.2 mW
(25.7 % energy saving)

! For the djpeg application, a 25% total energy saving
in the CPU plus memory subsystem is achieved at
the cost of a 22% performance loss

Actual vs. Target PFloss Factors

32.1 32.4 31.0
28.7

31.9
34.6

11.5 10.4 10.8 9.9 10.4 10.7

22.321.722.7
21.320.919.5

0

10

20

30

40

50

bf crc djpeg math qsort gzip

A
ct

u
al

 P
er

fo
rm

an
ce

 L
o

ss
 [

%
]

10% 20% 30%

Target Performance Loss

CPU-bound Memory-bound

! The difference between the actual and the target
performance loss factors is small (about 10% in
the worst case)

11

CPU Energy Saving Results

0

20

40

60

80

100

bf crc djpeg math qsort gzip

C
P

U
 E

n
er

g
y

S
av

in
g

 [
%

]

10% 20% 30%

Target Performance Loss

CPU-bound Memory-bound

! With a 20% performance loss bound, 55% and
25% CPU energy savings were achieved for the
memory-bound and the CPU-bound applications,
respectively

CPU + Memory Energy Saving Results

0

10

20

30

40

50

bf crc djpeg math qsort gzip

E
n

er
g

y
S

av
in

g
 [

%
]

10% 20% 30%

Target Performance Loss

CPU-bound Memory-bound

! With a 20% performance loss bound, 20% and
40% CPU energy savings were achieved for the
memory-bound and the CPU-bound applications,
respectively

12

Conclusions
! A fine-grained DVFS technique based on online

decomposition of the application workload into
on-chip and off-chip components was presented

! Based on actual current measurements in the
BitsyX platform
" For memory-bound programs, an average of 70%

PXA255 energy savings was achieved with 30%
performance degradation

" For CPU-bound programs, an average of 40% PXA255
energy savings was achieved at the cost of 30%
performance penalty

! Future work will consider the impact of the DVFS
on the total system energy consumption

