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! DVFS is a method through which variable amount of 
energy is allocated to perform a task

! Power consumption of a digital CMOS circuit is:

! Energy required to run a task during T is:

! Lowering V (while simultaneously and proportionately 
cutting f) causes a quadratic reduction in E

α= ⋅ ⋅ ⋅2
effP C V f

α : switching factor
Ceff : effective capacitance
V    : operating voltage
f      : operating frequency

= ⋅ ∝ 2E P T V (assuming f ∝ V,  T ∝ f –1)

Background on DVFS 

! DVFS techniques may be classified based on three 
factors:
" Constraint type : real-time (critical) vs. non real-time (non 

critical)
" Scaling granularity : inter-task (coarse) vs. intra-task (fine)
" Policy determination : static (offline) vs. dynamic (online)

! The target CPU frequency is calculated as follows:
" Given a task with workload, W, and latency constraint, D
" Suppose:

# W is specified as the number of CPU clock cycles needed to 
complete the task

# An inverse-linear relationship between the execution time and 
the CPU frequency exists, i.e., Ttask= W/fcpu

" ftarget is hence calculated as W/D (Note that Ttask = D)

Overview of Prior Work
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! Our proposed DVFS method is
" Dynamic, Intra-task and non real-time

! The proposed method results in significantly 
higher energy saving compared to the previous 
approaches. This is due to:
" Accurate estimation of the task execution time variation

as the CPU frequency is varied 

" This is in turn achieved by decomposing the workload 
into on-chip and off-chip components

" Dynamic profiling data provided by an embedded 
performance monitoring unit on the CPU is used to 
guide the estimation

" CPU frequency and voltage is potentially changed at 
the beginning of each Linux time quantum (60 ms)

Overview of the Proposed DVFS Method

Workload Decomposition

! CPU-bound vs. memory-bound applications show different 
execution time variation according to the CPU frequency
" CPU-bound : execution time strongly depends on the CPU 

frequency
" Memory-bound : little execution time variation

! A program execution sequence consists of on-chip and off-
chip workloads
" On-chip workload, WON : work performed inside the CPU 

(e.g., register-register instruction, ALU operation)
" Off-chip workload, WOFF : work performed outside the CPU 

(e.g., cache miss and subsequent access to main  memory)

! An external memory access is asynchronous to the CPU
" The change in the task execution time due to CPU frequency 

scaling is strongly dependent on the workload composition in a 
task
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Energy Saving as a Function of Application Type

! CPU energy can be saved with lower performance loss 
for memory-bound application programs
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Components of the Program Execution Time

! The amount of CPU and memory workloads for 
an application program must be determined

! Execution time of a program is the sum of the On-
chip (CPU work) and the Off-chip Latency 
(memory work)
" T = TON + TOFF

! TON : varies with the CPU frequency
" Cache hit
" Stall due to data dependency
" TLB hit, …

! TOFF: is invariant with the CPU frequency
" Access to external memory such as SDRAM and frame 

buffer memory, which is in turn due to a cache miss
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Calculating the Program Execution Time

! T = TON + TOFF

! If all parameters are known and the performance loss (PFloss) 
is specified, the target CPU frequency can be calculated as:
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Performance Monitoring Unit (PMU)

! PMU on the PXA255 processor chip can report up to 15 
different dynamic events during execution of a program
" Cache hit/miss counts, TLB hit/miss counts, No. of stall cycles,

Total no. of instructions being executed, Branch misprediction 
counts

! Only two events can be monitored and reported at any given 
time

! For DVFS, we use the PMU to generate statistics for
" Total no. of instructions being executed (INSTR)
" No. of stall cycles due to on-chip or off-chip data dependencies 

(STALL)
" No. of Data Cache misses (DMISS)

! We also record the no. of clock cycles from the beginning of 
the program execution (CCNT)

! From these parameters, we can calculate the average on-chip 
CPI
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Frequency Settings in BitsyX
! PXA255 can operate from 100MHz to 400MHz, with a core supply 

voltage of 0.85V to 1.3V 

! Nine frequency combinations (f CPU, f INT, f EXT)

! Internal bus connects the core and other functional blocks inside 
the CPU

! External bus is connected to SDRAM (64MB)
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! Execution time variation over different frequency 
combinations - “djpeg”, “qsort”, and “gzip”
" “djpeg” is CPU-bound ( strongly dependent on f CPU ) 
" “gzip” is memory-bound (f INT & f EXT dependent )
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Modeling the Execution Time in BitsyX

! TOFF is strongly dependent on the f EXT. However, f INT also 
affects TOFF

! Example: when a D-cache miss occurs, two operations 
are performed:
" Data fetch from the external memory (f EXT)
" Data transfer to the CPU core where the cache-line and 

destination register are updated (f INT)

! Due to lack of exact timing information, we have opted to 
model TOFF as:

! An α value of ~0.35 was obtained for tested applications
" The error in predicting the execution time was less than 3% 

for all nine frequency settings

α α⋅ − ⋅= + (1 )OFF OFF
OFF

INT EXT

W W
T

f f

Plot of CPI vs. SPI

! We define SPI as ratio of the number of stall cycles to the total 
instruction count
" CPIavg = CCNT / INSTR, during a time quantum
" SPIavg = STALL / INSTR, during a time quantum

! A regression equation is used to model the CPIavg vs. SPIavg

relation:

! The intercept c produces the average on-chip CPI without any 
stall cycles,
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Calculating CPIon
avg

! SPIavg accounts for all stall events:

! We also have:

! Let DPI denote the D-cache miss count per instruction, i.e.,
" DPIavg = DMISS / INSTR, during a quantum

! Let dpi2spi(DPIk) denote a discrete function that maps DPIk to 
SPIon

avg. Then:

SPIavg

CPIavg

CPImin
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Kn is constant: K1 < K2 < … < Kn

CPIavg = b*SPIavg+c
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CPIavg
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= +avg avg avg
on offSPI SPI SPI

= +avg min avg
on on onCPI CPI SPI

= + 2 ( )avg min
on on kCPI CPI dpi spi DPI

Note that when there 
are many D-cache 
miss events, there is 
a higher probability of 
off-chip accesses 
(although a D-cache 
miss does not always 
result in an off-chip 
access.)

Determining the Optimal Frequency Setting

! After calculating CPIon
avg for the current quantum, 

i, the on-chip and off-chip execution times are 
calculated as follows:

! Next we choose a frequency setting for the 
quantum i+1, Fopt

i+1, that satisfies the following 
equation :
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: The expected execution time of quantum i+1 at Fopt
i+1

: The execution time of quantum i at Fmax
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The BitsyX Platform 

! The ADS’s BitsyX board has a PXA255 microprocessor 
which is a 32-bit RISC processor core, with a 32KB 
instruction cache and a 32KB write-back data cache, a 
2KB mini-cache, a write buffer, and a memory 
management unit (MMU) combined in a single chip

The Software Architecture

“proc” Interface Module

Linux 
Scheduler

Policy Setting Module

PMU Access 
Module

DVFS
Module

Kernel Space

DVFS

PXA255 Processor

External PFlossInput parameter

! The software architecture comprises of a proc 
interface module and a policy setting module tightly 
linked with the linux scheduler, the PMU, and the 
Freq. and voltage control circuitry on the BitsyX board
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Energy vs. Execution Time Tradeoff

with DVFSwithout DVFS
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“djpeg” with 20% PFloss

Pactive / Pidle : 1743 / 1560.8 mW

PCPU+memory : 182.2 mW
(25.7 % energy saving) 

! For the djpeg application, a 25% total energy saving 
in the CPU plus memory subsystem is achieved at 
the cost of a 22% performance loss
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CPU Energy Saving Results
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! With a 20% performance loss bound, 55% and 
25% CPU energy savings were achieved for the 
memory-bound and the CPU-bound applications, 
respectively

CPU + Memory Energy Saving Results
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! With a 20% performance loss bound, 20% and 
40% CPU energy savings were achieved for the 
memory-bound and the CPU-bound applications, 
respectively
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Conclusions
! A fine-grained DVFS technique based on online 

decomposition of the application workload into 
on-chip and off-chip components was presented

! Based on actual current measurements in the 
BitsyX platform
" For memory-bound programs, an average of 70% 

PXA255 energy savings was achieved with 30% 
performance degradation

" For CPU-bound programs, an average of 40% PXA255 
energy savings was achieved at the cost of 30% 
performance penalty 

! Future work will consider the impact of the DVFS 
on the total system energy consumption


