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An Analytical Model for Predicting the Remaining Battery 
Capacity of Lithium-Ion Batteries 

Peng Rong, Student Member, IEEE and Massoud Pedram, Fellow, IEEE  

Abstract — Predicting the residual energy of the battery source 
that powers a portable electronic device is imperative in designing 
and applying an effective dynamic power management policy for 
the device. The paper starts up by showing that a 30% error in 
predicting the battery capacity of a Lithium-ion battery can 
result in up to 20% performance degradation for a dynamic 
voltage and frequency scaling algorithm. Next, this paper 
presents a closed-form analytical expression for predicting the 
remaining capacity of a lithium-ion battery. The proposed high-
level model, which relies on online current and voltage 
measurements, correctly accounts for the temperature and cycle 
aging effects. The accuracy of the high-level model is validated by 
comparing it with DUALFOIL simulation results, demonstrating 
a maximum of 5% error between simulated and predicted data.  

Index Terms—Remaining battery capacity, accelerated rate 
capacity, temperature, cycle aging and dynamic voltage scaling 

I. INTRODUCTION1 

HE battery service life of mobile battery-powered 
electronic systems is a major concern of designers of such 

systems. Attempts for extending the battery lifetime have 
traditionally focused on minimizing the power consumption of 
the electronic circuits powered by these batteries. These 
circuit-oriented techniques tend to be inadequate because they 
ignore important characteristics of the battery source itself e.g., 
the dependency of the remaining capacity of a secondary 
(rechargeable) battery on its current discharge rate and internal 
temperature, the charge recovery phenomenon, and the cycle 
aging effect. In the recent years, a number of researchers have 
begun to investigate the characteristics of battery sources and 
their impact on low-power circuit optimization techniques and 
power management strategies. A survey of battery-aware 
design techniques can be found in reference [1][2].  

A number of researchers have reported models for 
predicting the battery remaining capacity or battery service 
life. A low-level detailed electrochemical model based on 
concentrated-solution theory was reported in [3]. This model is 
accurate and general enough to handle a wide range of lithium-
ion cells, which also explains the wide-spread use of its 
companion simulator software. A multi-dimensional coupled 
thermal-electrochemical model was presented in [4]. 

Electrochemical models are accurate but inherently suffer 
from the long simulation time required in practice. 
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Consequently, more efficient battery models have been 
proposed in recent years. A macro-model for lithium-ion 
batteries was presented in [5], where the battery is modeled by 
a PSPICE circuit comprising of voltage sources and linear 
passive elements. Since simulation of the electrical circuit 
model is still time consuming, the authors of reference [6] 
proposed a discrete-time battery simulation model, which 
approximates a continuous-time circuit model by using VHDL 
language. Reference [7] studied the battery discharge 
efficiency under different loading conditions and 
approximated this dependency as a linear or quadratic function. 
In this paper, the authors also presented a discharge rate-based 
method to estimate the battery lifetime under a variable load. 
The battery discharge efficiency was used as the weighting 
coefficient in the lifetime estimation equation.  

Reference [8] presented a stochastic battery model based on 
discrete Markovian process which captures battery recovery 
and rate capacity effects. Reference [9] proposed a high-level 
diffusion based analytical model. This model aims to predict 
the battery lifetime given the discharge profile. The authors 
consider the concentration evolution of the active materials in 
the battery during a discharge process and model it as a one-
dimensional diffusion process in a finite region. In this model, 
a battery is considered exhausted when the active material 
concentration at the electrode surface drops below a preset 
threshold. This model is quite successful in terms of prediction 
accuracy, efficiency and generality. However, a prerequisite to 
use this model is that the load of a battery should be known 
exactly from the beginning of a discharge process. And this 
model does not take temperature dependence and cycle aging 
effects in account. So each time when a battery works in a 
different situation the model parameters needs to be reset, 
which may cause inconvenience in practice due to the 
overhead. An extensive review of battery models and battery 
aware low power techniques can be found in the [10]. 

The battery temperature and the cycle life of a secondary 
battery have a large impact on the battery lifetime after a full 
charging step. As temperature increases, the full discharge 
capacity of a secondary battery tends to increase. 
Unfortunately, higher temperature also results in much lower 
cycle-life for the battery (the cycle-life denotes the number of 
full charge/discharge cycles that a secondary battery can go 
thru before its output voltage drops below an acceptable 
threshold even after a full charging cycle.)  The battery cycle 
aging effect denotes the phenomenon by which the full 
deliverable capacity of a rechargeable battery decreases as the 
number of battery charge/discharge cycles (which is referred to 
as the cycle-age of the battery) increases. As shown in work 
[11], the full deliverable capacities of commercial lithium-ion 
batteries shrink by 10-40% during the first 450 
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charge/discharge cycles. Without knowledge about 
temperature and cycle life of a battery, it is therefore 
impossible to obtain an accurate prediction of the battery 
remaining capacity.  

Commercially deployed battery estimation techniques can 
be generally classified into three categories according to their 
expected accuracy: load voltage technique [12], coulomb 
counting technique [13], and internal resistance method [14]. 
The load voltage technique is suitable for applications with 
constant load. The coulomb counting technique accumulates 
the dissipated coulombs from the beginning of the discharge 
cycle and estimates the remaining capacity based on the 
difference between the accumulated value and a pre-recorded 
full-charge capacity. This method can lose some of its 
accuracy under variable load condition because it ignores the 
non-linear discharge effect during the coulomb counting 
process. The internal resistance method needs to measure the 
frequency response of the battery to determine its battery state. 
Because this method normally requires extra function 
generators and separate testing period, this method is 
expensive and difficult to implement as part of the battery pack 
itself.  

This paper presents an analytical model to predict the 
remaining capacity of a lithium-ion battery. The model takes 
the cycle-aging and temperature effects into account. This 
model requires small storage space, which is important since 
the amount of memory in the battery pack is usually limited. In 
addition, the proposed model relies on simple measurements of 
the battery output voltage and temperature, which can be easily 
achieved through the “smart battery” technology and 
corresponding interface. Starting from this analytical model, 
we present a method for predicting the remaining capacity of 
the battery under variable load conditions. This method makes 
use of information about the battery’s discharge history in the 
current charge/discharge cycle through a coulomb counting 
mechanism. 

The paper is organized as follows: In Section 2, a 
motivating application is provided to demonstrate the 
importance of correctly predicting battery remaining capacity. 
In Section 3, the basic electrochemical background of cells is 
introduced. The model which is first promoted in this paper 
and is used to estimate the remaining battery capacity is 
described in Section 4. Model validation results are presented 
in Section 5. Techniques for online prediction of the remaining 
battery capacity are presented in Section 6. Finally, 
conclusions are given in Section 7. 

II. MOTIVATING APPLICATION 

Dynamic voltage and frequency scaling (DVFS) is a highly 
effective method to reduce energy consumption in real-time 
applications. Reducing the supply voltage can significantly 
reduce the energy dissipation of a VLSI circuit but can also 
slow down the circuit. The energy dissipation of a running 
CMOS VLSI circuit is given by the well-known equation: 

2
switched clkE C V f T=  (2-1) 

where V  is the supply voltage level, switchedC  is the switched 

capacitance per clock cycle, clkf  is the frequency of the 

processor, T  is the total execution time. 

Utility, which was initially motivated by Shenker [15] to use 
in modeling of a user’s relative satisfaction for a real-time 
stream which is encoded at varying levels of fidelity, has been 
applied to the design of a wide range of systems running 
various types of applications [15][16][17]. A utility function 
maps the service delivered by a system into a real value which 
measures the performance of the application in terms of user 
perception. In the following, we will consider a scenario of 
utility-based DVFS for battery-power embedded systems. 
Martin [18] analyzed the power-performance trade-off for 
CPU speed-setting for mobile computing, where the number of 
computations performed per complete battery discharge is 
used as the optimization objective. This work takes the battery 
rate-capacity effect into consideration.  

Consider a partially-discharged secondary battery as the 
power source of an embedded system. Let’s assume the system 
has to complete a series of real-time tasks during the remaining 
battery lifetime. The utility rate is assumed to be a function of 
fclk , i.e., u=u(fclk). Total utility, U, is calculated as 

( , )

0
( , ) ( )

rem clkT V f

clk clkU V f u f dt= ∫  
(2-2) 

where Trem(V, fclk) refers to the remaining battery lifetime given 
that the circuit is running at frequency fclk with supply voltage 
V (notice that V is the output of the DC-DC-converter.) Thus 
the problem of utility-based DVFS is formulated as 

,max ( , )
clkV f clkU V f , (2-3) 

where  

clkf mV q= + , (2-4) 

where m and q are the regression coefficients of the best linear 
fit between the clock frequency and the supply voltage in the 
performance range of interest. To make this optimization 
problem analytically solvable, let’s assume that fclk remains 
constant for the remaining time. Now we have 

( , ) ( ) ( , )clk clk rem clkU V f u f T V f= . (2-5) 

Consider that at the beginning of this operation, the 
remaining ideal battery charge is Einit. Let iB denote the current 
drawn from the battery while VB denotes the battery output 
voltage (notice that VB is the input to the DC-DC converter.) 

We thus have: 
2

switched clk
B

B

C V f
i

Vη
= , where 0<η≤1 is a constant, 

capturing the DC-DC converter efficiency factor. If we ignore 
the battery characteristics, as has been done in the past, the 
utility function may be expressed as 

2

( )
( , ) ( ) init init clk

clk clk
B B switched clk

E E u f
U V f u f

i V C V f

η= = . 
(2-6) 
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This formulation does not, for example, take the battery 
rate-capacity effect into account. To overcome this drawback, 
we incorporate a function β'(iB) into the formulation (2-6), 
which captures the effect that the deliverable battery capacity 
decreases as the discharge rate increases. As discussed by Wu 
and Pedram [7], β'(iB) can be modeled by a linear up to a 
quadratic function of iB. Now, the above equation can be 
rewritten as  

2

( )
( , ) ( )

( ) ( )
init init clk

clk clk
B B B switched clk B

E E u f
U V f u f

i V i C V f i

η
β β

= =
′ ′

 
(2-7) 

However, this equation still makes the assumption that the 
battery discharge characteristics are unchanged throughout the 
whole discharge period, which rarely holds during discharge of 
a real battery employed in a real system.  

To make the dependence of U on variable V, we replace 
β'(iB) with β(V) and fclk with mV+q,  resulting in 

2

( )
( )

( ) ( )
init

switched

E u mV q
U V

C V mV q V

η
β

+=
+

 
(2-8) 

The simulation results of a Bellcore PLION cell by using 
DUALFOIL program [3] are presented in Figure 1. In this 
figure, each point is obtained in the following way. First, we 
discharge a fresh battery at a very low rate, i.e. 0.1C, to a 
certain state of the battery remaining charge, which is the x-
axis value of this point. Next, this battery is discharged from 
the current state to exhaustion at X.C rate. The points on any 
continuous curve in the figure have the same X value, which is 
reported beside the corresponding curve. All discharges took 
place at 25°C. Notice that the “1C” rate denotes a rate at which 
a fresh battery will be discharged to exhaustion in an hour at 
room temperature. 

From this figure, we can draw the following conclusions: (a) 
The Bellcore PLION cell exhibits the standard rate-capacity 
phenomenon. This can be seen, for example, by noting the 
degradation of the deliverable capacity of a fully-charged 
battery from a normalized value of 1 at a discharge rate of 
X=0.1C to about 0.68 at a discharge rate of X=1.33.  (b) The 
Bellcore PLION cell also exhibits an accelerated rate-
capacity behavior in the sense that if, for example, the battery 
is already half discharged, then the capacity loss for the 
remaining discharge process will go from a normalized value 
of 1 at a discharge rate of X=0.1C to about 0.52 at a discharge 
rate of X=1.33. In other words, the rate-capacity effect 
becomes more prominent at lower states of battery charge.  

 

Figure 1. Accelerated rate-capacity behavior; the x axis 
denotes the battery state of charge after partial discharge 

at a rate of 0.1C whereas the y axis denotes ratio of the 
remaining battery capacity at X.C discharge rate to that at 

0.1C discharge rate. 
From (2-8) we can obtain the optimal value of V as 

0
( ) 2 1

( ) clk

dU m V du d

dV u mV df dV V mV q

β β= ⇒ − = −
+

 
(2-9) 

For the conventional approach which ignores the battery 
characteristics (cf. equation (2-6)), the optimal V value can be 

obtained from (2-9) by letting ( ) 1u mV ≡  and 0
d

dV

β ≡ . These 

solutions are static, and therefore, unrelated to the dynamic 
state of charge of the battery. However, if we attempt to 
account for the accelerated rate-capacity behavior of lithium 
ion batteries, then β cannot be taken as constant any more. 
That is, we ought to make β a function of V and battery charge 
state s, i.e., we must use ( , )V sβ . Thus, the total utility is 

calculated as  

2

( )
( , , )

( ) ( , )clk

u mV
U V f s

V mV q V sβ
≈

+
. 

(2-10) 

The optimal value of V is a solution of  

( , ) ( , ) 2 1

( ) clk

m V s du V s

u mV df V V mV q

β β∂− = −
∂ +

. 
(2-11) 

To solve this optimization problem, it is important to 
calculate the correct value of ( , )V sβ , which in turn, as 

demonstrated in Figure 1, requires an accurate method to 
estimate the battery’s remaining capacity at different discharge 
rates. 

To quantitatively evaluate the impact of accelerated rate-
capacity behavior on the performance of the utility-based 
DVFS technique, let’s consider a real case: a voltage-
frequency adjustable Xscale processor running a rate-adaptive 
real-time application, powered by a Bellcore battery whose 
rate-capacity behavior is shown in Figure 1. We assume this 
battery has a C-rate of 250mA, which is equivalent to six 
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Bellcore’s PLION cells connected in parallel. As reported in 
[19], the clock frequency of the Xscale processor in GHz is 
related to the supply voltage in the form of equation: 

0.9629 0.5466clkf V= − , which is a best fit of the measuring 

points when fclk is in the range of 0.333 to 0.667 GHz. The 
power consumption of the Xscale processor at clock frequency 
667MHz is 1.16W, which discharges the battery at a rate of 
335mA.  

By assuming that the frequency-voltage level is 
continuously adjustable, we attempt to find out the optimal 
voltage level which maximizes the total utility during the 
remainder of the battery lifetime. In this example problem 
setup, we consider the following utility rate function: 

( ) (3 1) , 0clk clku f f θ θ= − > , which evaluates to 1 at 

666MHz and to 0 at 333MHz. Clearly, such a function means 
that the performance is completely satisfying at 666MHz while 
it is completely unacceptable at 333MHz. The particular 
functional form is chosen because utility-rate curves with 
different shapes, i.e., concave, convex and linear, may be 
obtained by simply adjusting the value of parameter θ. The 
simulation results, when θ=0.5, 1 and 1.5, are reported in the 
following table.  

For a comparison, we consider different methods to 
determine the optimal voltages. The first method determines 
the optimal voltage based on the rate-capacity characteristic of 
a fully-charged battery. For these two methods, the CPU 
voltage is determined by solving equation (2-9). The second 
method determines the optimal voltage setting based on a 
coulomb counting mechanism, which estimates the remaining 
battery capacity by subtracting the delivered capacity from the 
nominal capacity. 

 In Table I these two methods are referred as MRC and 
MCC, respectively. In the third and final method, denoted by 
Mopt, the operating voltage is set to a value that maximizes 
the total utility based on the actual accelerated rate-capacity 
curves as shown in Figure 1. With this method, the CPU 
voltage is determined by solving equation (2-11). In this table, 
the “Vopt” column under each method contains the “optimal” 
voltage value determined by this method whereas the 
corresponding simulated utility values appear in column “Util”. 
The utility values shown in this table are relative values as 
compared to the utility obtained with the MRC method, which 
is in turn normalized to 1 (not shown in the table.)   

From this table, it is observed that an accurate estimation of 
battery remaining capacity is important to maximizing the 
utility especially when battery is in a low state of charge. For 
example, when the battery state of charge (SOC) at 0.1C is 0.2 
and θ=1, the optimal CPU supply voltage determined by the 
MRC and MCC methods are 1.13V and 1.23V, respectively. 
However, by using the Mopt method, the actual optimal CPU 
voltage is found to be 1.05V. In this case, the Mopt method 
achieved 15% improvement over the MRC method in terms of 
the total utility. For the same setup, the MCC method yielded 
31% lower total utility even compared to the MRC method.  

Table I  
SIMULATION RESULTS FOR OPTIMAL VOLTAGE SETTING 

MRC Mopt MCC Battery 
SOC at 
0.1C 

θ 
Vopt Util Vopt Util Vopt 

0.5 1.01 1.00 1.01 1.00 1.03 

1 1.13 1.00 1.13 0.91 1.23 0.9 

1.5 1.22 1.00 1.22 0.98 1.26 

0.5 1.01 1.00 1.00 0.98 1.03 

1 1.13 1.01 1.10 0.86 1.23 0.5 

1.5 1.22 1.01 1.19 0.97 1.26 

0.5 1.01 1.01 0.99 0.97 1.03 

1 1.13 1.06 1.07 0.78 1.23 0.3 

1.5 1.22 1.06 1.15 0.95 1.26 

0.5 1.01 1.04 0.98 0.95 1.03 

1 1.13 1.15 1.05 0.69 1.23 0.2 

1.5 1.22 1.19 1.11 0.98 1.26 

0.5 1.01 1.16 0.96 0.91 1.03 

1 1.13 1.59 1.01 0.49 1.23 0.1 

1.5 1.22 1.86 1.05 0.64 1.26 

III. BATTERY BACKGROUND 

This paper focuses on lithium-ion batteries because they are 
the fastest growing battery systems. Lithium-ion batteries are 
widely used in the notebook computers and cellular phones 
due to the high energy density and light weight. The schematic 
of the lithium-ion battery under consideration (Bellcore’s 
PLION battery) in this paper is shown in Figure 1. It consists 
of the positive electrode (LiyMn2O4), negative electrode 
(LixC6) and a plasticized electrolyte composed of a 1M LiPF6 
in EC/DMC in a silica-tilled p(VdF-HFP) copolymer matrix. 
The current collectors are made of aluminum (positive) and 
copper (negative) [20]. 

L ixC 6 L iyM n O 2
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Figure 2. Schematic of a lithium-ion battery. 
The electrochemical reactions at the electrodes are [4]: 

At positive electrode (cathode): 

4242 OMnLixexLiOMnLi yxy ++ −+
−

discharge

charge  

At negative electrode (anode): 

discharge

charge

−+ ++ xexLiCLiCLix 606
 

During the discharge process lithium ion de-inserts from 
solid particles of the negative electrode and inserts into solid 
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particles of the positive electrode. The process is reversed 
during the charge process.  

Cell discharge is limited mainly by two mechanisms: lithium 
ion diffusion in the solid phase and electrolyte depletion in the 
positive electrode. Usually, an end of discharge is considered 
to have been reached when the cell potential drops below a 
threshold, called the cut-off voltage.  

A rechargeable battery may regain its capacity through the 
charge process. A discharge and the following charge are 
called a cycle. The deliverable capacity of a lithium-ion 
battery tends to decrease as the cycle count increases. This 
phenomenon is called cycle aging phenomena.  

In the following sub-sections, we will introduce the basic 
equations related to the battery inner electrochemical 
processes. 

A. Notation 

The following notation is used in the remainder of this 
paper.  

General 
c : Concentration  

aE : Activation energy 

F : Faraday’s constant, -1mol C 96,485  

κ : Conductivity 

oi : Exchange current density 

R : Gas constant, -1-1 mol K J 8.3144  
n :  Number of electrons transferred 
α : Transfer coefficient 

Superscripts 
b  : Bulk 
s  : Surface of electrode 

Subscripts  
a : Anode 
c : Cathode 
r : Reactant consumed in the oxidation reaction 
o : Reactant consumed in the reduction reaction 

B. Cell Potential 

Cell potential does not represent a source of energy, rather it 
denotes a voltage drop inside the battery during its discharge 
process due to the physical and chemical changes in the 
properties of the material that make up the battery electrodes 
and electrolyte. The overall cell potential may be divided into 

three parts [21][22]: the ohmic overpotential ohmη , the surface 

overpotential sη , and the concentration overpotential cη  

Based on Ohm’s law, Ohmic overpotential ohmη  can be 

expressed as an integral from the cathode to the anode: 

∫==
L

soohm xA

dxiA
IR

0

ln )(

)0(

κ
η  

(3-1) 

where lnsoR  is the resistance between the two electrodes, 

)(xA  is the area of the cross-section at distance x  from the 

negative electrode, and L  is the distance between the two 
electrodes. 

sη  is the potential that makes the electrode reactions 

proceed at appreciable rates. It is related to the current density, 
which is governed by the following equation: 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−−⎟

⎠
⎞

⎜
⎝
⎛= s

c
s

a

RT

F

RT

F
ii ηαηα

expexp0
 

(3-2) 

where T  is temperature in Kelvin and 0i  is the exchange 

current density. If oxidation reaction is dominant in the anode 
and reduction reaction is dominant in the cathode, then the 
above equation can be reduced to: 

aa
as i

i

F

RT

,0
, ln

α
η = , 

cc
cs i

i

F

RT

,0
, ln

−
−=

α
η  

(3-3) 

for the anode and cathode, respectively 

cη  is caused by the concentration variations near the 

surface of the electrode. In solutions with an excess of 
supporting electrolytes, it can be approximated as: 

s
r

b
r

ac
c

c

nF

RT
ln, =η , 

s
o

b
o

cc
c

c

nF

RT
ln, =η  

(3-4) 

at the anode and cathode, respectively. 

C. Temperature Dependence 

The transport and kinetic properties usually exhibit an 
Arrhenius dependence on temperature, which is described by 
the following equation [4]: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

Φ
Φ=Φ

TTR

E

ref

a
ref

11)(
exp  

(3-5) 
where Φ  is a generic variable representing any of the 
following parameters the diffusion coefficient of a species, 
conductivity of the electrolyte κ , exchange current density of 
an electrode reaction, etc., and subscript ref denotes the value 
at a reference temperature. )(ΦaE  is the activation energy of 

the evolution process of Φ . Its magnitude determines the 
sensitivity of Φ to temperature. 

D. Cycle Aging  

The cycle aging phenomenon of lithium-ion batteries 
involves several different side reactions, such as cell oxidation 
processes, electrolyte decomposition (reduction) processes and 
self-discharge processes [23]. According to [24], the loss of 
charge acceptance of the Lithium-ion batteries is mainly due to 
cell oxidation, which occurs naturally during use and as a part 
of aging. The cell oxidation leads to a film grown on the 
electrode, which non-reversibly increases the internal 
resistance of lithium-ion batteries and finally causes a failure. 
Usually, it is adequate to describe the film growth using a 
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linear approximation. In [23], the growth of the film is related 
to the rate of the side reaction by 

FL

Mi

t
k

αρ
δ =

∂
∂  

(3-6) 

where δ  is the film thickness composed of lithium products, 

ki  is the rate (current) of the side reaction, other parameters 

FaLM ,,,, ρ  are all constant for a given reaction and a 

given battery. 

IV. MODEL DESCRIPTION 

The objective of this paper is to construct a high-level 
model to predict the remaining capacity of a rechargeable 
lithium-ion battery in terms of the battery output voltage, 
discharge-rate (current), battery temperature, and the cycle age 
of the battery. Here the term current always means that the 
average current at which the battery is supposed to be 
discharged to its end of life starting from this point in time. 

A. Modeling the Cell Terminal Voltage 

During the discharge process, the output terminal voltage v  

is equal to the initial open-circuit voltage initVOC  minus the 

voltage drop inside the battery, which is in turn caused by the 
drained current. This voltage drop is also known as the cell 
potential. It is denoted by η  and is calculated as: 

)()( ,,,, ccaccsasohm ηηηηηη −+−+=  (4-1) 

From (3-2) and (3-3), one can see that if the discharged 
current is constant, the first two overpotential terms in (4-1) 
are also constant and do not vary with time. So one can use a 
resistance to represent the effect of these two overpotentials: 

i

Ta

i

iTa
TaTir

)(ln)(
)(),( 32

1 ++=  
(4-2) 

where, 

∫=
L

xA

dxA
Ta

0

1 )(

)0(
)(

κ
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
caF

RT
Ta

αα
1

)(2
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+−=

c

c

a

a ii

F

RT
Ta

αα
)ln(ln

)( ,0,0
3

. 
(4-3) 

Based on (3-4), the concentration overpotential term in (4-1) is 

s
co

s
ar

b
co

b
ar

ccac cc

cc

nF

RT

,,

,,
,, ln=−ηη . At the very beginning of the 

discharge process, the concentration near the electrode surface 
should be the same as the concentration in the bulk solution. 
As the charge is drained off the battery, the concentration near 
the electrode surface decreases while the bulk concentration 
remains almost unchanged. So the ratio of surface 
concentration to the bulk concentration is approximated by 

2
11 bcb ⋅− , where c  is the charge capacity delivered up to 

this point. Also it’s assumed that the form 2
11 bcb ⋅− applies 

to the both electrodes. Thus, the concentration overpotential 
can be expressed as: 

)),(1ln( ),(
1,,

2 Tib
ccac cTib ⋅−−=− ληη  (4-4) 

where 
nF

RT2=λ  and 1b  and 
2b  are functions of discharge-

rate and temperature, respectively. 

Now a closed form expression for v  may be written as: 

( )),(
1

2),(1ln),(),,( Tib
init cTibiTirVOCTicv ⋅−⋅+⋅−= λ . 

(4-5) 

B. Modeling the Temperature Dependence 

When temperature varies among different cycles, one needs 
to take into account the temperature dependence of model-
related properties of the battery material, such as electrolyte 
conductivity, electrolyte diffusion coefficients, and rate of 
electrochemical reactions.  

By considering the Arrhenius dependence κ (c.f. section 

3.3) of conductivity, based on (4-3), 1a  is expected to be 

related to T  by: 

13
12

111 exp)( a
T

a
aTa +⎟

⎠

⎞
⎜
⎝

⎛⋅=  
(4-6) 

where, 131211 ,, aaa  are all constant, among which 13a  is an 

introduced parameter that helps calibrate the prediction. 

Since aα  and cα  are unrelated to the temperature T , from 

(4-3), it is known that 2a  should be linearly proportional to 

the T : 

22212 )( aTaTa +=  (4-7) 

where, 2221 , aa  are constant. 

In addition, if one considers the Arrhenius dependence of 

exchange current density ai ,0  and ci ,0 , one can get the 

temperature dependence for 3a  from (4-3): 

3332
2

313 )( aTaTaTa ++=  (4-8) 

where, 333231 ,, aaa  are all constant. 

Using the same analytical method, when considering the 
Arrhenius temperature dependence of the diffusion coefficient 
of the active material, one can find that: 

13
12

111 exp),( d
T

d
dTib +⎟

⎠

⎞
⎜
⎝

⎛=   

(4-9) 
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23
22

21
2 ),( d

dT

d
Tib +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

=  

  (4-10) 

where 11d  to 23d  are functions of current i . In this paper, 

based on our curve fitting, we assume that their dependencies 
on the current are as follows: 

∑
=

⋅=
4

0

)()(
z

z
jkzjk idmid  

  (4-11) 

where, 2,1=j , 3,2,1=k  and )( jkz dm  are constant 

coefficients. 

C. Modeling the Cycle Aging 

Based on Ohm’s law, the resistance of the film grown on the 

electrode surface fr  is proportional to its thickness, 

tir kf Δ⋅∝Δ .Based on the above formula, it is reasonable to 

assume that frΔ  is proportional to cΔ , which is the capacity 

delivered during tΔ . If during each cycle the total capacity 

delivered is roughly the same, then fr  can be considered as a 

linear function of cn , the number of cycles that the battery has 

experienced before. 

The temperature also has a significant impact on the film 
growth. More precisely, the cycle life of a battery decreases as 
temperature increases. In [20], authors claimed that their 
lithium-ion battery could survive more than 2000 cycles at 

C°25  but only 800 cycles at C°55 . As stated in [22], this is 
due to the Arrhenius dependence of reaction rate ki  on 

temperature. So ),( Tnr cf ′  is described as follows:  

( , ) expf c c

e
r n T k n

T
ψ⎛ ⎞′ = ⋅ ⋅ − +⎜ ⎟′⎝ ⎠

 
    (4-12) 

where k  is a constant, aEe = , a

ref

E

T
ψ =

′
, and T ′  is the 

temperature that the battery experienced in  the previous 
cycles. 

Combining (4-12) and (4-2), the expression of r  in (4-5) is 
rewritten to include the cycle aging effect, 

),(),()',,,( 0 TnrTirTnTir cfc ′+= . 
    (4-13) 

where, ),(0 Tir  represents the original form derived in (4-2). 

If the battery experienced different temperatures in the 
previous cycles, a probability distribution can be used to 
describe the temperature history. Let )(TP ′  denote the 

probability that the temperature is T ′  in some cycle. The film 
resistance can be expressed as: 

( , ) ( ) expf c c
T

e
r n T n P T k

T
ψ

′

⎛ ⎞′ ′= ⋅ ⋅ − +⎜ ⎟′⎝ ⎠
∑  

(4-14) 

D. Computing the Remaining Capacity 

State of charge (SOC) is a widely used concept in the 
literature to represent the remaining capacity of a battery in a 
charge/discharge cycle. It is defined as the ratio of the 
remaining capacity (RC) to the full charge capacity (FCC). 
However, due to the cycle aging phenomenon, using SOC 
alone may result in large errors because the FCC of a cycle-
aged battery may be significantly less than the design capacity 
(DC) that denotes the FCC of a newly manufactured battery. 
Considering the cycle aging effect, a new concept, state of 
health (SOH) is defined as the ratio of FCC of cycle-aged 
battery to its DC. Using the equation derived in the above 
subsections, we can obtain equations for SOC and SOH. 

Equation (4-5) can be reformulated as: 

( ) ( )
⎟
⎠
⎞

⎜
⎝
⎛ −−⋅′

−=⋅
λ

vVOCiTnTir
cTib initcTib ,,,

exp1),( ),(
1

2  

(4-15) 

To simplify the notation, let ),0,,(0 TTirr ′= , 

( )TnTirr cn ′= ,,, , vVOCv init −=Δ  and 
offcutinitm vVOCv −−=Δ  

and use 1b  and 
2b  to represent ),(1 Tib  and ),(2 Tib .  

Using equation (4-15), SOH and DC are computed as:  

2

1

0

1

1
1 exp

b
mr i v

DC
b λ

⎧ ⎫⎡ ⋅ − Δ ⎤⎛ ⎞= −⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎩ ⎭
. 

(4-16) 

2

1

0exp1

exp1
b

m

mn

vir

vir

SOH

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎟
⎠

⎞
⎜
⎝

⎛ Δ−⋅
−

⎟
⎠

⎞
⎜
⎝

⎛ Δ−⋅
−

=

λ

λ . 

(4-17) 

From (4-15), (4-16) and (4-17), SOC can be related to SOH 
and DC as follows: 

2
2 2

1

1 1

1 1
exp

1

b
b b mv v

SOH DC
b b

SOC
SOH DC

λ
⎡ ⎤⎛ ⎞ Δ − Δ⎛ ⎞− − ⋅⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠⎣ ⎦= −
⋅

 
(4-18) 

Finally, RC is calculated as: 

RC SOC SOH DC= ⋅ ⋅    (4-19) 

This last equation (4-19) in combination with equations (4-
16), (4-17) and (4-18) is the key result of the present paper. It 
is a completely new result. 

E. Determining Model Parameters 

Before using the model presented here, the related 
parameters need to be determined. All parameters can be 
obtained from the battery experimental data. For example, 

),( Tir  in (4-5) is equal to the initial battery potential drop 
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divided by the current. When the values of ),( Tir  are 

obtained, the parameters to be determined can be divided into 

two parts. 1b  and 2b  may be obtained by finding an optimum 

fit of equation (4-5) to the battery voltage-discharged capacity  

trace using the least squares fitting method. 1a  to 3a  are 

determined using the same fitting method to fit equation (4-

6,7,8) to the values of ),( Tir . Because 1b , 2b  and 1a  to 3a  

are known, values of other model parameters that are 
dependent on them can be calculated in a similar way: step by 
step, until all parameter values are found. 

V. MODEL VALIDATION 

A. Experimental Setup 

The DUALFOIL program [3] is used to simulate a 
Bellcore’s PLION battery [20]. The parameters are set up 
according to [25]. 

1. Setup for cycle life simulation  

The original form of the DUALFOIL does not support the 
cycle aging effect. After private correspondence with the 
authors of the DUALFOIL, the code was modified to 
incorporate a capacity degradation mechanism. The modified 
DUALFOIL was verified with the actual cycle-life data 
provided in [20]. Comparison between the simulation results 
and the actual battery data for a battery temperature of C°22  
is shown in Figure 1. The maximum error of the full 
discharged capacity is less than 2%. 

 

Figure 3. Battery capacity fading data as a function of 
Battery cycle life ( C 22T °= ). 

 

2. Setup for temperature effect simulation 

The original form of the DUALFOIL does not specify the 
temperature dependence of the material properties, i.e., 
temperature only appears in the diffusion potential term of the 
modified Ohm's law in the electrolyte and in the Butler-
Volmer equation. Without accounting for the temperature 
dependencies of the material properties, the simulation results 
contradict the actual battery experimental data.  

We adopted the thermal model developed in [26], which 
was originally developed to predict the temperature behavior 
of lithium/polymer battery. This thermal model is a variation 
of the DUALFOIL model with the addition of energy balance 
equation and physical property variations with temperature. 
The related thermal parameters in the model are adjusted to 
match the experimental data for the materials used in the 
PLION battery. For example, the fitted temperature 
dependence of the ionic conductivity is shown in Figure 4, 
where the circle points denote the conductivity values 
measured in [27] for the electrolyte 1M LiPF6/EC/DMC in 
PVdF-HFP. The temperature dependences of the properties 
involved in the film growth were estimated according to the 
cycle-life data provided in [20]. 

 

Figure 4. Lithium ionic conductivity of 1M 
LiPF6/DC/EMC in PVdF. 

B. Experimental Results 

To determine the model parameters, a wide range of battery 
working conditions were simulated. 

Temperature range: 

{ }.60,50,40,30,20,10,0,10,20 CCCCCCCCC °°°°°°°°−°−
During this simulation, it was assumed that the battery is 
always working at the same temperature, which means that the 
temperature in the previous cycle is the same as that in the 
current cycle. 

Discharged current range: 

⎭
⎬
⎫

⎩
⎨
⎧

3

4
,

6

7
,,

6

5
,

3

2
,

2
,

3
,

6
,

15

CC
C

CCCCCC , where the “1C” rate 

denotes a rate at which a fresh fully charged battery will be 
discharged to exhaustion in an hour at room temperature. For 
the battery examined in this paper, “1C” is equal to mA5.41 . 

Cycle number range: up to 1,200 cycles or SOH below 80%. 

The discharge profile at any combination of 
abovementioned temperature, discharge current and cycle 
number (the hundredths only) was obtained. The obtained 
model parameters are listed in Table 1. The full discharged 
capacity of the battery at C/15 and at C°20  is taken as a unity 
when calculating the remaining capacity prediction error. The 
max prediction error is less than 6.4% and the average 
prediction error is 3.5%. Secondly, we performed the 
following tests to examine the proposed model.  
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Test case 1) The battery was cycled to 1200 cycles at 
“1C” rate at 20oC. The SOC profiles of the 200th, 475th, 
750th and 1025th cycles are compared with the 
predictions of the proposed model in Figure 3. 

Test case 2) The battery was cycled to 200 cycles at 
20oC. The discharge current of each cycle was assumed 
to be uniformly distributed in the range of C/15 to 4C/3. 
Next the battery was discharged at C/3, 2C/3 and C, and 
at 0oC, 20oC and 40oC. The remaining capacity profiles 
were compared with those predicted by the proposed 
model in Figure 4. The max prediction error is 4.2%. 

Test case 3) The battery was cycled to 360 cycles at “1C” 
rate. The temperature of each cycle was assumed 
uniformly distributed in the range from 20oC to 40oC. 
Next the battery was discharged at C/15 and 1C at 20oC. 
The simulation results were compared with the predictions 
of the proposed model in Figure 5. The max remaining 
capacity prediction error is 4.9%. 

VI. ONLINE ESTIMATION OF A BATTERY’S REMAINING 

CAPACITY  

A. System Architecture 

The structure of an electronic system integrating the support 
of system management bus (SMBus) [24] for the battery 
source is shown in Figure 5. (The SMBus battery is also 
known as “smart battery”.) The SMBus is a two-wire interface 
system developed on Inter-IC (I²C) bus technique, which is a 
synchronous bi-directional communications system with an 
interface comprising of a clock wire and a data wire. It 
operates at a rate of up to 100 KHz. The SMBus circuit is 
integrated inside the battery, which consists of voltage/current 
and temperature sensors with corresponding AD converters. 
Through the SMBus, the internal measured battery data can be 
transferred to the outside power manager, which can then 
adjust the performance/power dissipation behavior of the 
electronic system.  

A data flash memory can also be integrated into the SMBus 
circuit, which provides storage for manufacturing data and 
temporary buffer for the user acquired data, such as 
instantaneous voltage and/or current measurement, 
accumulated coulomb counting, cycle counting, and so on. 
When the power manager obtains the battery data, it invokes 
the software module to analyze and handle the data based on 
battery model, and predict the battery remaining capacity and 
lifetime. 

B. Online Prediction Methods 

The first method we consider is a simple method based only 
on current-voltage measurement and is thus referred as   the IV 
method. The use of this method only requires the battery 
output terminal voltage given that the battery will be 
discharged at the current rate. At any time instant t, if we know 
the terminal voltages, v1 and v2, for different currents i1 and i2, 
then the terminal voltage at current i at time t can be calculated 
as  

 

Figure 5. Architecture of an electronic system with 
SMBus support. 

 

 

1 2
2

1 2

v v
v i v

i i

−= +
−

. 
(6-1) 

This equation holds because only the ohmic overpotential 
can change instantly. By substituting the terminal voltage into 
equation (4-19) with the current, temperature and cycle age 
information, we can obtain the battery’s remaining capacity. 
This method is quite accurate when a battery is discharged at a 
constant current rate. However, in an environment where a 
battery works with a variable load, this method may produce 
large errors due to the non-ideal characteristics of a battery. To 
address this shortcoming, we describe below a more elaborate 
method which incorporates the discharge history to adjust the 
prediction.  

In this section, we consider the problem of battery’s 
remaining capacity prediction as defined as follows: Predict 
the remaining capacity of a battery at time t, given that an 
initial fully-charged battery has been discharged at a constant 
rate ip from time 0 to t. However, after time t, the battery is 
expected to be discharged to exhaustion at another constant 
rate if. In practice, the value of if may be estimated based on 
the application running on the processor. Some level of static 
profiling [28] or compiler level annotation [29] will be helpful 
to improve accuracy of this prediction, which falls outside the 
scope of the present paper. 

Let RCIV denote the prediction made by the IV method, 
which is calculated by using equation (4-19) with current if 

substituted for i. Consequently, RCIV can be expressed as 

( ) ( )IV
f fRC SOC i FCC i=  (6-2) 
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where FCC(if), as was defined in section 4.4, represents the 
full deliverable capacity as though the battery is constantly 
discharged at rate if in the present discharge cycle. 

To incorporate the discharge history, we consider adjusting 
the prediction made by the IV method by using a coulomb 
counting method, which is referred to as the CC method. The 
CC method predicts the battery remaining capacity by using 
the following equation 

( )CC
f pRC FCC i i t= − .  (6-3) 

The actual prediction by the resulting method is a linear 
combination of the predictions by the IV and CC methods, i.e.,  

(1 )IV CCRC RC RCγ γ= + − , (6-4) 

where γ is determined according to the rules presented below. 
Let nc denote the cycle age of the battery and T the discharge 
temperature. 

1) if <ip 

2

( , ( )) p f
c f c

p f

i i t
T r n

i i
γ γ=

−
, 

(6-5) 

where γc is a coefficient whose value can be read from a table 
indexed by T and rf. This table is generated offline by fitting 
the calculated γ with the actual simulated values.  

2) if >ip 

1 2 3( )( )p c c f ci iγ γ γ γ= + + ,       (6-6) 

where γc1, γc2 and γc3 are coefficients whose values can be read 
from a table indexed by T and rf. This table is also generated 
offline by using a curve fitting method. 

We performed experiments to examine the prediction 
accuracy of different methods. The experiments were 
performed for over 3240 instances; the tested configurations 
corresponded to a combination of temperature (5°C, 25°C, 
45°C), cycles (300th, 600th, 900th) and all valid combinations 
of currents in the set shown in section 5.2 with 10 discharge 
states each. In the case where if <ip, the average prediction 
error is 1.03% whereas the maximum error is less than 2.94%. 
In the second case, the average prediction error is 3.48% while 
the maximum error is less than 12.6%. Notice that the full 
discharged capacity of the battery at C/15 and at C°20  is taken 
as unity when calculating the remaining capacity prediction 
error. 

C. Revisiting the DVFS Application 

Let’s re-consider the motivating application of section 2; the 
experimental setup remains the same. However, this time we 
use the battery remaining capacity estimated by using the 
method presented in section 6.2 in order to calculate the 
optimal supply voltage for the Xscale processor. After that, 
simulations were performed to determine the actual obtained 
utilities when the Xscale processor runs at the calculated 
supply voltages. The simulation results are presented in Table 

II under method “Mest”, which are very close to the optimal 
results, “Mopt”.  

Table II.  
Simulation results for optimal voltage setting 

Mopt Mest Battery 
SOC at 
0.1C 

θ 
Util Vopt Util Vopt 

0.5 1.00 1.01 1.00 1.02 

1 1.00 1.13 1.00 1.13 0.9 

1.5 1.00 1.22 1.00 1.22 

0.5 1.00 1.00 1.00 1.01 

1 1.01 1.10 1.01 1.11 0.5 

1.5 1.01 1.19 1.01 1.19 

0.5 1.01 0.99 1.01 1.00 

1 1.06 1.07 1.06 1.08 0.3 

1.5 1.06 1.15 1.06 1.14 

0.5 1.04 0.98 1.03 0.98 

1 1.15 1.05 1.14 1.04 0.2 

1.5 1.19 1.11 1.16 1.08 

0.5 1.16 0.96 1.14 0.95 

1 1.59 1.01 1.42 0.97 0.1 

1.5 1.86 1.05 1.47 0.99 

VII. CONCLUSION 
A comprehensive high-level model was presented to predict 

the remaining capacity of a battery considering the temperature 
effect and the cycle aging effect. The effectiveness of this 
model was validated by comparing it with detailed battery 
simulation results. Techniques based on this model were 
developed for online prediction of the remaining battery 
capacity under variable workload conditions. The use of this 
model for dynamic power management was demonstrated 
through a DVFS application scenario.  

 

Table III 
 Parameters of the proposed high-level battery model 

Parameter Name Value 

λ 0.43 

a11 a12 a13 
a1 

-0.438 2.10 0.448 

a21 a22  
a2 

-4.1e-3 0.64  

a31 a32 a33 
a3 

-3.82e-6 2.4e-3 -0.368 

m4 m3 m2 m1 m0 
d11 

1.91e-9 -2.28e-7 8.36e-6 -8.77e-5 1.92e-4 

m4 m3 m2 m1 m0 
d12 

-2.04e-3 0.24 -9.15 99.7 1.82e3 

b1 

d13 m4 m3 m2 m1 m0 
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-8.51e-8 9.49e-6 -3.10e-4 3.13e-3 0.135 

m4 m3 m2 m1 m0 
d21 

1.83e-4 -1.96e-2 0.571 -1.46 5.97 

m4 m3 m2 m1 m0 
d22 

4.67e-5 4.88e-3 0.135 -0.451 -2.24e2 

m4 m3 m2 m1 m0 

b2 

d23 
-1.14e-6 1.13e-4 -2.73e-3 -3.84e-3 2.07 

k 1.17e-4 

e 2.69e3 

ψ 9.02 
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Figure 6. SOC traces for test case (1). 
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Figure 7. Remaining capacity traces for test case (2). 
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Figure 8. Remaining capacity traces for test case (3). 
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