
Closing the Gap between Carry Select Adder and Ripple Carry Adder: A New Class
of Low-power High-performance Adders

Behnam Amelifard

University of Southern California
amelifar@usc.edu

Farzan Fallah
Fujitsu Laboratories of America

farzan@fla.fujitsu.com

Massoud Pedram
Universality of Southern California

pedram@ceng.usc.edu

Abstract
Based on the idea of sharing two adders used in the Carry
Select Adder (CSA), a new design of a low-power high-
performance adder is presented. The new adder is faster
than a Ripple Carry Adder (RCA), but slower than a CSA.
On the other hand, its area and power dissipation are
smaller than those of a CSA.

1. Introduction
The increase in the popularity of portable systems as well
as the rapid growth of the power density in integrated
circuits have made power dissipation one of the important
design objectives, second only to performance. Because
adders are one of the most widely used components in
integrated circuits, designing efficient adders has been the
goal of much research in VLSI design. While Ripple
Carry Adders (RCAs) have the most compact design
(O(n) area) among all types of adders, they are the
slowest types of adders (O(n) time). On the other hand,
Carry Look-ahead Adders (CLAs) are the fastest adders
(O(log(n) time), but they are the worst from the area point
of view (O(nlog(n)) area) [2]. Carry Select Adders
(CSAs) have been considered as a compromise solution
between RCAs and CLAs ()(nO time and O(2n) area)
because they offer a good tradeoff between the compact
area of RCAs and the short delay of CLAs. As a result,
some effort has been done to improve the efficiency of
this kind of adder [1-5]. In [1], for example, an area
efficient adder has been proposed which uses an
increment circuit instead of one of the two adder blocks
which add high bits.
In this research, based on the idea of sharing the two
adders that are typically used in the CSA, a new
architecture is proposed which is more compact and
power efficient than the CSA. Additionally it is shown
that by using this idea iteratively, one can effectively
trade area for delay. More specifically, the delay of the
proposed adder is)2(nO while its area is O((1+α)n),
where α<1.
The rest of the paper is organized as follows. In Section 2,
CSA is introduced and a partitioning methodology for
hierarchical design of CSA is presented. In Section 3 a
new architectures is proposed to reduce area and power
consumption of CSA. Section 4 demonstrates simulation
results of the new architecture, while Section 5 concludes
the paper.

2. Carry Select Adder
The conventional n-bit CSA consists of one n/2-bit adder
for the lower half of the bits and two n/2-bit adders for the
upper half of the bits. Of the two latter adders, one
performs the addition with the assumption that Cin=0,
whereas the other does this with the assumption that
Cin=1. Using a multiplexer and the value of carry out that
is propagated from the adder for the n/2 least significant
bits, the correct value of the most significant part of the
addition can be selected. Although this technique has the
drawback of increasing the area, it speeds up the addition
operation. The architecture of the adder is shown in
Figure 1.

Figure 1: Architecture of a two-stage CSA

Using the idea of CSA iteratively, the delay of the adder
can significantly be reduced. It can be shown that if the
delay of multiplexers is negligible, the delay of the
iterative CSA will grow with the square root of the
number of bits. A more accurate analysis is required to
find the delay of CSA if the delay of multiplexers is not
negligible. In the following, such an analysis is presented
and will be confirmed with simulation results.
Assume that for constructing an n-bit CSA, the bits are
partitioned into m groups where group i contains Pi bits
such that the bit width of the least significant part is P1
and the bit width of the most significant part is Pm. In
CSA, the adders of all parts except for P1 should be
duplicated. A schematic of a three-stage CSA (m=3) is
shown in Figure 2.
In this figure, Cs1 is the carry propagated from the first
part to the second one, while CS2 is the carry propagated
from the second part to the third one. Moreover, Cout is
the carry-out of the n-bit addition operation.

MUX

P1 bit Adder

AP1-1-A0 BP1-1-B0

P2 bit Adder

AP1+P2-1-AP1 BP1+P2-1-BP1

P3 bit Adder

AP1+P2-1-AP1 BP1+P2-1-BP1

Cin CoCi

OP1-1-O0

0

1

OP1+P2-1-OP1

Ci

Ci Co

Co

MUX

P3 bit Adder

A2n-1-AP1+P2 B2n-1-BP1+P2

P3 bit Adder

A2n-1-AP1+P2 B2n-1-BP1+P2

0

1

O2n-1-OP1+P2

Cout

Ci

Ci Co

Co

CS1 CS2

0

1

0

1

Figure 2: Three-stage CSA

The problem of designing the fastest CSA can be
expressed as finding m and Pi�s (1≤i≤m) to minimize the
delay of the circuit. The basic assumption of the following
analysis is that the delay of an RCA is a linear function of
the number of bits. Moreover, it is assumed that by using
techniques such as buffer insertion, the capacitive load for
each operational module (i.e., the adders and the
multiplexers) is constant.

Assume the delay of a (one-bit) full adder is A and the
delay of a multiplexer is M. The first assumption can be
written as,

) ()(adderfulldelaykadderbitkdelay ×= (1)

To design the fastest CSA, we should balance all paths
from the inputs of the adder to Cout. These delays may be
written as:

()MmAPD 1.11 −+=
()MmAPD 1.22 −+=

�
()MimAPD ii 1. +−+=

�
MAPD mm += .

(2)

where Di is the delay from the ith adder to Cout.
By setting these delays equal to each other, it can be
easily shown that,

()
A
MiPPi 21 −+= , (2≤ i≤m) (3)

Considering the fact that ΣPi=n, the values of Pi�s will be,

m
mm

A
M

m
nPP

)1)(2(
221

−−
−== (4)

)2()1)(2(
2

−+−−−= i
A
M

m
mm

A
M

m
nPi , (3≤ i≤m) (5)

So, the delay of the adder can be written as,

()()
m

mmM
m
nAmMAPdelay 21

2
.)1(1

+−+=−+= (6)

To minimize the delay:

M
An

M
Anm

m
delay 2120 * ≈






 −=⇒=

∂
∂ (7)

Using this value for m, from (4), it follows that,

A
M

nA
M

A
MP

2
323

2
*

1 ≈









−= (8)

Now, from (6), the minimum delay of a CSA can be
obtained as:

MnAMdelay
2
12* += (9)

Moreover, it is easily seen that the area of this adder can
be expressed as:

MA SPmnSPnarea)1()2(11 −−++−= (10)
Where, SA and SM are the area of a full adder and one bit
multiplexer, respectively. So, the area of the fastest adder
of this architecture would be equal to:

MA S
A
M

M
AnnS

A
Mnarea)1

2
32()

2
32(* −−++−= (11)

3. Design of a New Adder
The proposed innovation for doing addition is that instead
of using two separate adders in CSA, one for the case
CS1=1 and the other for the case CS1=0 (CS1 is the carry
propagated from the first partition to the second one), one
adder will be used to reduce the area and power
dissipation. In this scheme, each of the two additions is
done in half of the clock cycle. To accomplish this
sharing, some latches are required. This adder is called
Carry Select Adder with Sharing (CSAS).

Figure 3 shows the implementation of the idea. In this
architecture, (transparent) latches are used to save the
result of addition when Cin of the 10-bit (MSB) RCA is
one. When the clock transitions to low, the 10-bit adder
calculates the result of 10-bit addition for the case Cin is
zero. Therefore, at the end of the clock cycle, the result of
the addition of the 10 MSBs is available for both cases of
the carry-in signal. Next, based on the actual value of the
carry calculated by the LSB adder, a MUX selects the
appropriate value, either from the output of the latch or
the output of the adder. This value will be the result of the
32-bit addition.

Referring back to Figure 3, notice that the inputs of the
adder are partitioned into two parts, one adding the first
22 bits (the LSB adder), while the other adds the last 10
bits (the MSB adder.) Note that the LSB adder has nearly
twice as many bits as the MSB adder. Therefore, the MSB
adder can calculate the sum of 10 high bits twice when
the LSB adder calculates the addition of the lower 22 bits.

This reduces the delay of adding 32 bits by a factor of 1/3
compared to RCA.

Figure 3: The architecture of CSAS

Like the CSA, this idea may be applied iteratively to
achieve faster adders. Assume the bits of an n-bit adder
are partitioned into m groups, where m=1 corresponds to
the group containing the lease significant bits. Pi denotes
the number of bits in group i. Figure 4 shows the three
stage adder (m =3). Note that P1=16, P2=8, and P3=8. To
design the fastest possible adder by this technique, we
should find the value of m and Pi�s (1≤ i≤m) to minimize
the delay of the circuit.

Using the assumptions made in the previous section, we
first try to balance all critical paths from the inputs of the
adders to Cout. Note that the first adder performs addition
only once, while all other adders do it twice. So,

()MmAPD 1.11 −+=
()MmLAPD 1.2 22 −++=

�
()MimLAPD ii 1.2 +−++=

�
MLAPD nn ++= .2

(12)

where L is the delay of the latch. By setting these delays
equal to each other and exploiting the fact that ΣPi=n, it
can be shown that,

A
LPP += 21 2 (13)

)2(
22 −+= i

A
MPPi , (mi ≤≤2) (14)

So,
()

)1(1
)1(2

412 +
−

+
−−−

+
=

mA
L

m
mm

A
M

m
nP (15)

and the delay of the adder is calculated by,

()()
() () L

m
L

m
mmMA

m
ndelay +

+
−

+
+−+

+
=

1
2

1
41

21
2 (16)

The optimum value of m to minimize delay is,

1644* −−−=
M
L

M
Anm (17)

MUX

Latch

16 bit Adder

A15-A0 B15-B0

8 bit Adder

A23-A16 B23-B16

MUX

Latch

8 bit Adder

A31-A24 B31-B24

Cin

CLK

O23-O16

O31-O24

O15-O0

8

16

9

8 9

9 8

89

Cout

Ci

Ci

Co

Co

CoCi CS1

CS2

1

0

1

0

Figure 4: The new implementation of CSAS (m=3)

Since usually n is large, A≈M and L≈M, equation (17)
may be approximated as:

12* −≈
M
Anm (18)

By replacing (18) into (16), the minimum delay of this
type of adder can be estimated by,

LMnAMdelay ++≈
2

2* (19)

Comparing equations (9) and (19), one can see the fastest
adder designed using the new idea is 2 times slower
than the fastest CSA. However, the area of CSA is larger
than the area of the CSAS.
On the other hand, it can be easily verified that the area of
CSAS with m stages can be written as,

()LMA SSPmnnSarea +−−++=)1(1 (20)
where SL is the area of a latch. Therefore, the area of the
fastest adder of this architecture can be expressed by:

))(2
2
52(*

LMA SS
A
L

A
M

M
AnnnSarea +−−−++= (21)

Table 1 shows the comparison among the delay and area
of RCA, the fastest adder of CSA, and the fastest adder of
CSAS.

4. Simulation Results
The proposed ideas in Section 3 has been applied to 32
and 64-bit adders. The Synopsys Design Analyzer tool
was used to synthesize the circuits for minimum power
dissipation and area. To estimate the power dissipation of
the resulting circuits, Synopsys DesignPower was used.

Table 1: Comparison of the area and delay of the fastest CSA and CSAS
 Delay Area

RCA nA AnS

CSA MnAM
2
12 + MA S

A
M

M
AnnS

A
Mn)1

2
32()

2
32(−−++−

CSAS LMnAM 222 ++))(2
2
52(LMA SS

A
L

A
M

M
AnnnS +−−−++

For simulations, the inputs of the adders were set to 0 or 1
with equal probability. In these experiments a 0.35um
library with the power supply of 3.3V has been used.

Table 2 shows the delay and area of full adders,
multiplexers and latches for this library.

Table 3 shows the results for 32-bit adders, while Table 4
shows the delay of the adders calculated using the
formulas developed in Section 2 and 3. Here, no flip flop
has been inserted at the output of the adders. The numbers
in parentheses show the values of Pi�s; for example, (9-8-
15) means P3=9, P2=8, and P1=15. It is noteworthy that
for the library used in this experiment, the optimum value
of m for minimizing the delays of CSA, and CSAS are 6,
9, and 5, respectively.

Table 2: Delay and area of full adders, multiplexers,
and latches

Delay
(nS)

Area
(µm2)

Full Adder 0.6 70
MUX 0.7 17
Latch 0.8 42

Tables 5 and 6 show the same data as those in Tables 3
and 4, but for a 64-bit adder. The optimum value of m for
minimizing the delay for CSA, and CASS are 10 and 9,
respectively. For the sake of brevity, only three versions
have been shown for each adder. Comparing the
specifications of CSA and CSAS with different number of
stages shows the proposed idea is superior to CSA. For
example, comparing two-stage CSA with four-stage
CSAS for 64 bits (Table 5) shows that although the power
consumption of the CSAS is 1.5% more than CSA, but its
area and delay are respectively 4.4% and 3.4% less than
CSA.

5. Conclusion
Based on the idea of sharing two MSB adders used in
CSA, a new technique for designing high-performance
and low power adders is proposed. In the technique, one
adder and some latches are used for adding the MSB�s.
This innovation results in adders that are faster than RCA,
but slower than CSA. On the other hand, the area
overhead of CSAS is smaller than that of CSA. Therefore,
in designs where some reduction in the delay of the
critical path is desired, but large area overhead is
intolerable, CSAS can be used to replace RCAs.
Alternatively, in designs where smaller area or lower
power consumption is desired while some increase in the
delay of the longest path in the circuit is allowed, CSAS
can be used to replace CLAs.

References
[1] K. Rawwat, T. Darwish, and M. Bayoumi, �A low
power carry select adder with reduces area,� Proc. of
Midwest Symposium on Circuits and Systems, pp. 218-
221, 2001.
[2] A. Tyagi, �A reduced area scheme for carry-select
adders,� IEEE Trans. on Computer, vol. 42, pp. 1163-
1170, 1993
[3] W. Jeong and K. Roy, �Robust high-performance low-
power adder,� Proc. of the Asia and South Pacific Design
Automation Conference, pp. 503-506, 2003
[4] Y. Kim and L-S Kim, �64-bit carry-select adder with
reduced area,� Electronics Letters, vol. 37, pp. 614-615,
May 2001.
[5] O. Kwon, E. Swartzlander, and K. Nowka, �A fast
hybrid carry-lookahead/carry-select adder design,� Proc.
of the 11th Great Lakes symposium on VLSI, pp.149-152,
March 2001.

Table 3: The specifications of 32-bit RCA, CSA, and CSAS

Adder Area
µm2

Delay
Ns

Power
mW

Area
Ratio%

Delay
Ratio%

Power
Ratio %

RCA 2181 19 73.7 - - -
CSA: 2 stages (16-16) 3537 10.7 121.5 162.2 56.3 164.9
CSA: 3 stages (12-10-10) 4036 8.2 137.3 185.1 43.2 186.3
CSA: 4 stages (10-8-7-7) 4293 7.1 144.1 196.8 37.4 195.5
CSA: 5 stages (9-7-6-5-5) 4440 7.0 148 203.6 36.8 200.8
CSAS: 2 stages (10-22) 2769 15.6 99.3 127.0 82.1 134.7
CSAS: 3 stages (8-8-16) 3152 13.8 115.1 144.5 72.6 156.2
CSAS: 4 stages (7-6-6-13) 3373 12.1 123.7 154.7 63.7 167.8
CSAS: 5 stages (6-6-5-5-10) 3456 11.3 135.3 158.5 59.5 183.6

Table 4: Comparison between analytical delay and simulate delay for 32-bit RCA, CSA, and CSAS

Adder
Analytical

Delay
(ns)

Simulated
Delay(ns)

Error
%

RCA 19.0 19 0.0
CSA: 2 stages (16-16) 10.3 10.7 -3.7
CSA: 3 stages (12-10-10) 7.6 8.2 -7.3
CSA: 4 stages (10-8-7-7) 6.4 7.1 -9.9
CSA: 5 stages (9-7-6-5-5) 5.8 7.0 -17.1
CSAS: 2 stages (10-22) 15.9 15.6 1.9
CSAS: 3 stages (9-6-17) 12.8 13.8 -7.2
CSAS: 4 stages (9-6-3-14) 11.1 12.1 -8.3
CSAS: 5 stages (9-6-3-1-13) 10.1 11.3 -10.6

Table 5: The specifications of 64-bit RCA, CSA, and CSAS

Adder Area
µm2

Delay
Ns

Power
mW

Area
Ratio%

Delay
Ratio%

Power
Ratio %

RCA 4447 37.42 150 - - -
CSA: 2 stages (32-32) 7069 19.81 244.6 159.0 52.9 163.1
CSA: 3 stages (22-21-21) 7985 14.39 275.7 179.6 38.5 183.8
CSA: 4 stages (10-8-7-7) 8484 11.84 291.9 190.8 31.6 194.6
CSAS: 2 stages (21-43) 5677 26.37 203.6 127.7 70.5 135.7
CSAS: 3 stages (17-14-33) 6368 21.35 232.3 143.2 57.1 154.9
CSAS: 4 stages (15-12-10-27) 6759 18.8 248.3 152.0 50.2 165.5

Table 6: Comparison between analytical delay and simulate delay for 64-bit RCA, CSA, and CSAS

Adder Analytical
Delay(ns)

Simulated
Delay(ns)

Error
%

RCA 38.4 37.42 2.6
CSA: 2 stages (32-32) 19.72 19.81 -0.5
CSA: 3 stages (22-21-21) 13.73 14.39 -4.6
CSA: 4 stages (10-8-7-7) 10.91 11.84 -7.9
CSAS: 2 stages (21-43) 30.8 27.76 11.0
CSAS: 3 stages (17-14-33) 24.0 23.46 2.3
CSAS: 4 stages (15-12-10-27) 20.1 21.45 -6.3

