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Abstract—The emergence of cloud computing has established 

a trend towards building energy-hungry and geographically 

distributed data centers. Due to their enormous energy 

consumption, data centers are expected to have major impact on 

the electric power grid by significantly increasing the load at 

locations where they are built. Dynamic energy pricing policies in 

the recently proposed smart grid technology can incentivize the 

cloud computing controller to shift their computation load 

towards data centers in regions with cheaper electricity. On the 

other hand, distributed data centers also provide opportunities to 

help the smart grid to improve load balancing and robustness. To 

shed some light into these opportunities, this paper considers an 

interaction system of the smart grid, the cloud computing system, 

and other load devices. A nested two stage game based 

formulation is proposed based on the location-dependent real-

time pricing policy of the smart grid. The leading player in this 

game is the smart grid controller that announces the relationship 

between the electricity price at each power bus and the total load 

demand at that bus. In the second stage, the cloud computing 

controller performs resource allocation as response to the pricing 

functions, whereas the other load devices perform demand side 

management. The objective of the smart grid controller is to 

maximize its own profit and perform load balancing among 

power buses, whereas the objective of the cloud computing 

controller is to maximize its own profit with respect to the 

location-dependent pricing functions. The optimal strategies are 

derived based on the backward induction principle for the smart 

grid controller, the cloud computing controller, and the other 

load devices, using convex optimization and heuristic search.  

I. INTRODUCTION 

Cloud computing transforms the computation and storage 
resources from network edges to a “Cloud” from which businesses 
and users from anywhere in the world are able to access applications 
on demand [1]. In the cloud, the capabilities of business applications 
are exposed as sophisticated services that can be accessed over a 
network. Cloud service providers (CSPs) are incentivized by the 
profits obtained from charging clients for accessing these services. 
Clients are attracted by the opportunity for reducing costs associated 
with “in-house” provision of these services. Cloud computing has 
been envisioned as the next-generation computing paradigm for its 
advantages in ubiquitous access and on-demand service, location 
independent resource pooling, and transference of risk [2][3].  

The underlying infrastructure of cloud computing consists of data 
centers and clusters of servers that are monitored and maintained by 
the cloud service providers [5]. Service providers often end up over-
provisioning their resources in these servers in order to meet the 
clients’ service level agreements (SLAs) [4]. Such over-provisioning 
may increase both the electrical energy cost and the carbon footprint 
incurred on the servers. Hence, optimal provisioning or allocation of 
the resources in the cloud is imperative in order to reduce the energy 
cost incurred on the servers as well as the environmental impact while 
satisfying the clients’ SLAs. 

The major cloud service providers such as Google, Microsoft, and 
Amazon have built and are working on building the world’s largest 
data centers with enormous energy consumption. Each data center 
includes hundreds of thousands of computer servers, cooling 
equipments, and substation power transformers. For example, 
Microsoft's data center in Quincy, Washington consumes 48 
megawatts that is enough to power 40,000 homes [5]. Data centers are 
expected to have a major impact on the electric grid by significantly 
increasing the load consumption at locations where they are built. 
Therefore, integration of large-scale data centers may degrade the 
reliability and robustness of traditional power grid with respect to load 
demand variations and link breakage. 

The recently proposed smart grid technology takes advantage of 
the modern communication system to gather information from 
consumers and suppliers in order to improve efficiency, reliability, 
and sustainability of the power grid, thereby minimizing the overall 
cost of electrical power delivered to the end users [6]. Utitlity 
companies can employ time-dependent or location-dependent 
dynamic pricing policies, incentivizing consumers to perform demand 
side management (DSM) [7] e.g., shifting their loads from the peak 
time periods to off-peak periods or from one physical location to 
another location. Real-time pricing is an important dynamic pricing 
policy and fits very well for applications such as vehicle-to-grid 
(V2G) systems [8]. When real-time pricing is applied, the utility 
company announces the relationship (usually a superlinear function) 
between the electricity price and the total load demand over the next 
time slot (usually a few minutes to one hour.) The pricing function 
may be different at different locations or power buses (also known as 
locational marginal real-time pricing [9]). 

Because the electricity cost dominates all the other cost aspects in 
the cloud, the central controller of the cloud should develop resource 
management algorithms among data centers that account for the 
variations of electricity price at different regions by dynamically 
shifting the computation load towards data centers that are located in 
regions with cheaper electricity [10]. Developing such resource 
management algorithms and location-dependent dynamic electricity 
pricing strategies is important in order for mitigating the negative 
impacts on the smart grid from integrating large-scale data centers. 
With appropriately designed dynamic pricing policies, it is even 
possible that data centers could actually help the smart grid design in 
terms of load balancing and robustness thanks to the flexibility in 
service request dispatching to various data centers [11][12]. 

In this paper, we consider a smart grid system comprised of 
multiple power buses. We consider a set of distributed data centers in 
this system. Each data center is comprised of potentially 
heterogeneous servers in terms of request processing ability, and is 
connected to a power bus in the smart grid to obtain the electricity for 
operation. Service requests from a common request pool are free to be 
dispatched to any server in the cloud computing system. The total 
profit in the cloud computing system is the total price obtained from 
serving the service requests, which depends on the average request 
response time defined in the utility function of the SLA, subtracted by 
the energy cost of the active datacenters. 

We consider the location-dependent real-time pricing scenario. In 
this pricing scenario, the smart grid controller announces the 



relationship between the electricity price at each power bus and total 
load demand at that power bus. The cloud computing controller as 
well as the other load devices will perform demand side management 
as response to these pricing functions. Please note that the reactive 
power is neglected in this modeling. We consider the interaction 
system of the smart grid, the cloud, and other load devices. The 
objective of the smart grid controller is to maximize its own profit and 
perform load balancing among power buses. The objective of the 
cloud computing controller is to maximize its own profit with respect 
to the location-dependent pricing functions. We provide a nested two 
stage (Stackelberg) game-based formulation for the interaction 
system. The leading player in this game is the smart grid controller. In 
the second stage of the game, the cloud computing controller 
determines the resource allocation results in the cloud, whereas the 
other load devices determine their corresponding power consumption 
values. The second stage forms a non-cooperative subgame of the 
nested two stage game, because the electricity price at each power bus 
depends on the load power consumption levels.  

Based on the backward induction principle in Stackelberg games 
[13], we start with the optimization in the second stage and find the 
subgame perfect equilibrium (SPE) of the cloud computing controller 
and the other devices using convex optimization [14]. Based on the 
SPE, we derive the optimal strategy for the smart grid controller using 
the simulated annealing approach [15]. Experimental results 
demonstrate the effectiveness of the proposed nested game-based 
optimization framework on profit maximization and load balancing. 
Since this current approach is only valid for systems where network 
constraints can be neglected, in future works, network constraints will 
be incorporated in the formulation. 

II. SYSTEM MODEL AND PROBLEM FORMULATION 

A. The Smart Grid Model 

Consider a smart power grid with   power buses, indexed by the 
integer i. The power buses are interconnected through branches 

forming the grid topology. Each ith (      ) power bus is 
connected to various load devices. In our system model, some load 
devices of the smart grid may include large data centers that support 
cloud computing facilities. There are   distributed data centers in this 
infrastructure, indexed by the integer j. Each data center is connected 
to one power bus in the smart grid to obtain the electricity required for 

its operation. Let        denote the index of the power bus that the jth 
data center is connected to. 

The total load power consumption at the ith power bus, denoted by 

      
    , is calculated via: 

      
           

         
    (1) 

where       
   denotes the total power consumption of the data centers 

(if any) connected to bus i; the term       
    denotes the total power 

consumption of any load devices other than the data centers at the ith 

power bus. Let       denote the power consumption of the jth data 

center. Then       
   is calculated by: 

      
         

        

 (2) 

If there is no data center connected to the ith power bus,       
    . 

Please note that the reactive power is neglected in this modeling. 
We consider the location-dependent real-time pricing scenario in 

this paper. In this pricing scenario, the smart grid controller announces 
the relationship between the unit electricity price at each ith power bus, 

denoted by       , and the total load demand       
     at that power bus. 

The relationship is denoted by the function              
     . The smart 

grid controller performs effective load balancing by (i) incentivizing 
the cloud computing controller to shift the loads among data centers, 

and (ii) incentivizing the other load devices to perform demand side 

management. Hence, the unit energy price        at the ith      
   power bus is set in the following way: 

             
                

           
           

  (3) 

where       
    is the amount of power generation at the ith power bus; 

      
  represents the base electricity price at the ith power bus;    is 

the coefficient determined by the smart grid controller. As we can see 

from (3), if the load demand       
     is higher than       

   ,        will 

be increased to discourage the users from consuming more energy 
from the ith power bus, and vice versa. This pricing policy will reduce 
the amounts of electric power flowing from one power bus to another 
(through the branches) by trying to match the power consumption 

      
     with power generation       

    at each power bus. 

B. The Cloud Computing System Model 

Figure 1 shows the structure of the target resource allocation 

system in the cloud with a service request pool,   distributed and 
heterogeneous data centers as well as a central resource manager. 

Each jth data center consists of    potentially heterogeneous servers. 

We use k as the index of servers in a data center. 
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Fig. 1. Architecture of the resource allocation system in the cloud. 

The service request pool contains service requests generated from 
all the clients. A service request is free to be dispatched to any server 
in the cloud. The request dispatcher dispatches a request to the kth 

server in the jth data center with probability     . These probability 

values are the optimization variables in the resource allocation 
framework. 

In order to find the analytical form of the average response time, 
service requests (in the request pool) are assumed to follow a Poisson 

process with an average generating rate of  , which is predicted based 
on the behavior of the clients. According to the properties of the 
Poisson distribution, service requests that are dispatched to the kth 
server in the jth data center follow a Poisson process with an average 

rate of       , which is the average request arrival rate of that server. 

By using the well-known formula in M/M/1 queues [17], the average 
response time of service requests dispatched to each kth server in the jth 
data center is calculated as 

            

 

           
              

                                      

  (4) 

where      denotes the average request processing speed of the kth 

server in the jth data center. 
The average power consumption in each kth server in the jth data 

center is proportional to the portion of time that the server is active, 

which is given by              : 



    
           

      

    
     

        
 (5) 

where     
        

 is the server’s power consumption when it is active.  

The power consumption of the jth data center is the sum of the 
total power consumption of all its servers, i.e.,  

  
        

          

      

 (6) 

We use              to represent the utility function of the 
cloud computing system with the average request response time equal 
to  . Then the total profit of the cloud, which accounts for both the 
price obtained from servicing requests and the energy cost, is 
calculated by: 

         
    

           

  

   

 

   

   

              

 

   

      
          

  

           

 

(7) 

C. Other Load Devices 

Let    denote the number of other load devices than data centers 

that are connected to the ith power bus in the smart grid. Let     
    

denote the power consumption of the lth          load device 
connected to the ith power bus, and we have: 

      
         

   

  

   

 (8) 

We use     
        

     to denote the utility function (i.e., the satisfaction 

level) of the lth load device connected to the ith power bus, as a 

function of the power consumption level     
   . The utility function 

should satisfy the following three requirements: 

     
        . 

 The first derivative of the utility function is positive, i.e., 

    
        

     is a increasing function, when     
     . 

 The utility function is a concave function. 

        
             

    
 
 is one type of utility function that satisfies the 

above three requirements, where      and      are positive coefficients 

and are device specific. This type of utility function is suitable for air 
conditioning or water heating applications, where neither of too low or 
too high power consumption is desirable. 

The overall objective function of the lth load device connected to 
the ith power bus is given as follows, accounting for both the utility 
function of the device and the electricity cost: 

    
        

                
    (9) 

III. FORMULATION AND OPTIMIZATION 

In this section, we consider the interaction system of the smart 
grid and cloud computing systems under the location-dependent real-
time pricing scenario, and provide a nested game-based formulation. 
The leading player is the smart grid controller, which announces the 

electricity price function              
      at each power bus, instead of 

the actual price values. In the second stage, the cloud computing 
controller determines the resource allocation results, i.e., the      

values, whereas other load devices determine the power consumption 

levels     
   ’s, as response to the price functions. The second stage 

forms a non-cooperative subgame of the nested two stage game, 
because the electricity price        at each power bus depends on the 
locational load power consumption levels. 

Based on the backward induction principle in Stackelberg games 
[13], we start with the optimization procedure in the second stage. We 
find the subgame perfect equilibrium (SPE) of the cloud computing 
controller and the other devices in the second stage, as stated in 
Section III.A. Based on the SPE, we derive the optimal strategy of the 
smart grid controller in the first stage as described in Section III.B. 

A. The Subgame Perfect Equilibrium in the Second Stage 

Suppose that the price function at each power bus is provided by 
the smart grid controller. Then the second stage of the nested two 
stage game forms a non-cooperative normal-form game, where all the 
players take action simultaneously. We name the normal-form game 
the Resource Allocation and Demand Side Management (RA-DSM) 
game. The players include the cloud computing controller and the 
other load devices. The optimization variables (i.e., the strategy) of the 
cloud computing controller are the      values, whereas the strategy 

chosen by the lth other load device connected to the ith power bus is the 

power consumption level     
   . The payoff functions (i.e., the 

objective functions) of the cloud computing controller and the other 
load devices are given by Eqns. (7) and (9), respectively. Please note 
that the payoff of each player in the RA-DSM game also depends on 
the strategies of the other players since the electricity price 

             
      at each power bus depends on the total load demand of 

data centers and the other load devices at that power bus. 
The constraints in the RA-DSM game include: 

                       (10) 

      

  

   

 

   

   (11) 

    
               (12) 

As the cloud computing controller and the other load devices are 
considered to be non-cooperative among each other, we are interested 
in the existence and uniqueness of the Nash equilibrium [13]. The 
Nash equilibrium of the RA-DSM game is the SPE of the overall 
nested two stage game for the interaction system. The Nash 
equilibrium is the optimal strategy profile for all the players in the 
sense that no player can find a better strategy if he deviates from the 
current strategy unilaterally. In other words, no player (the cloud 
computing controller or the other load devices) will have incentive to 
leave this strategy in the Nash equilibrium. Therefore, the Nash 
equilibrium is of particular interest to a non-cooperative normal-form 
game. We prove the existence and uniqueness of the Nash equilibrium 
in the RA-DSM game. 

Theorem I (Nash Equilibrium in the RA-DSM Game): The Nash 
equilibrium of the RA-DSM game exists and is unique. 

Proof: We are going to prove that the RA-DSM game is a strictly 
concave n-player game. We need to prove (i) the domain of the 
strategy profile for all the players, which is constrained by (10) - (12), 
is a closed convex set, and (ii) the objective (payoff) function for each 
player to maximize is a concave function with respect to the 
optimization variable of that player, assuming that the optimization 
variable values of the other players are given. One can easily observe 
that (i) is true. In the following, we prove that statement (ii) is also 
true. 

For the jth load device connected to the ith power bus, Eqn. (9) is a 

concave objective function of the optimization variable     
     because: 

 The first term     
        

     of Eqn. (9) is a concave function of 

    
    according to the definition. 

 The second term            
    is a convex function of     

    

because        is a linearly increasing function of     
   . 

For the cloud computing controller, Eqn. (7) is a concave objective 
function of the optimization variables     's because: 



 The first term in Eqn. (7) is a concave function of      values 

because 
    

           
 is a convex function of     . 

 The second term in Eqn. (7) is a convex function of the      values 

because        is a linear function of 

      
          

  
           , which is furthermore a linear 

function of the      values. 

After we have proved that the RA-DSM game is a strictly concave 
n-player game, the existence and uniqueness of Nash equilibrium are 
directly resulted from the first and third theorem in [18].                      

Each player of the RA-DSM game finds the Nash equilibrium, 
which is the SPE of the overall nested two stage game, using standard 
convex optimization technique [14]. The detailed procedure is 
illustrated in Algorithm 1. 

Algorithm 1: Finding the Nash Equilibrium in the RA-DSM 

Game for the Cloud Computing Controller and Other Devices. 

Initialize the      values for the cloud computing system as well as 

the     
    values for the other load devices. 

Do the following procedure iteratively: 

Find the optimal      values (i.e., the best response of the cloud 

computing system), by solving the convex optimization problem 

with the objective function (7) and constraints (10), (11).  

Update the      values. 

For each      ,       : 

Find the optimal     
    value (i.e., the best response of the lth 

mobile device connected to the ith power bus), by solving the 

convex optimization problem with objective function (9) and 

constraint (12).  

Update     
    to be the new value. 

End 

Until the solution converges. 

B. Optimization of the Pricing Functions 

Based on the backward induction principle in Stackelberg games 
[13], we find the optimal strategy of the smart grid controller in this 
section after deriving the SPE in the second stage of the nested game. 
In the first stage, the smart grid controller (the leading player) 

determines the optimal    values (and therefore, the optimal real-time 
pricing functions) for      , which are the optimization 
variables. The objective of the smart grid controller is to achieve an 
optimal balance between maximizing its own profit and performing 
load balancing among power buses, with an anticipation of the 
demand side managements performed by various load devices 
including data centers. More specifically, the smart grid controller 

finds the optimal    values in order to maximize the following 
objective function: 

                 
    

 

   

       
     

       
           

    
 
 (13) 

where    and    are the relative weights greater than or equal to zero. 

In Eqn. (13),               
     

    is the total revenue of the smart grid 

controller from selling electricity, whereas                
     

      
    

 
 is the metrics of load imbalance (because the power flowing 

through the branches will be minimized when       
     matches with 

      
   .) Less load imbalance among all the power buses is preferred 

for the robustness concerns. Therefore, we maximize the former term 

and minimize the latter term in (13). We name this optimization 
problem performed in the smart grid controller the Optimal Pricing 
with Anticipation of Demand side managements (OPAD) problem. 

When the pricing functions (i.e., the    values) are given, we can 

derive the load power consumption levels       
    ’s in (13) through 

finding the Nash equilibrium in the RA-DSM game (i.e., the SPE of 
the second stage in the nested game.) This procedure requires using 
convex optimization technique as stated in Section III.A. The actual 
electricity price        at each ith         power bus also 

depends on       
     as stated in (3). Since the OPAD problem is 

integrated with finding the Nash equilibrium in the RA-DSM game, it 
is a hard problem to be solved optimally in polynomial time. 
Therefore, we propose to use the simulated annealing-based method 
[17] in order to find a near-optimal solution of the OPAD problem. 
The detailed procedure is provided in Algorithm 2. 

Algorithm 2: Deriving a Near-Optimal Pricing Policy for the 

Smart Grid Controller. 

Initialize the temperature  . 

Initialize        to be a large negative number. 

Do the following procedure: 

Randomly change one or multiple    values. 

Find the Nash equilibrium in the RA-DSM game using convex 

optimization technique, based on the updated    values. 

Calculate       
   for       using (2), (5), (6), based on the 

derived      values. 

Calculate       
    for       using (8), based on the derived 

    
    values, and subsequently calculate       

     for       

using (1). 

     the value of the objective function (13) based on the 

calculated       
     values. Note that the actual electricity price 

       for       also depends on       
     as stated in (3). 

If           : Accept the change of the    values. 

Else: Accept the change with probability                . 

           if the change has been accepted. 

Decrease the temperature  . 

Until the temperature   has decreased to a certain value, i.e., the 

algorithm has cooled down. 

IV. EXPERIMENTAL RESULTS 

In this section, we implement the interaction system of the smart 
grid, the cloud computing system, and the other load devices, and 
demonstrate the effectiveness of the proposed nested game-based 
optimization framework. We use normalized amounts of most of the 
parameters in the interaction system instead of their real values. 

We consider a smart power grid that is comprised of 12 power 

buses. The amount of power generation       
    at each ith         

power bus in the smart grid system is a uniformly distributed random 
variable between 6 and 8. The base price over all the power buses, i.e., 

      
  for      , are set to 1, whereas the    values are the 

optimization variables. We consider 4 distributed data centers in the 
interaction system. The data centers are connected to power buses 1 to 
4. Each data center is connected to a power bus. The data centers are 
comprised of 5 servers, 6 servers, 9 servers, and 10 servers, 

respectively. The average service request generating rate   is assumed 

to be 30. The average service request processing rate     in each 

server is a uniformly distributed random variable between 1 and 2. 



The maximum power consumption of each server is uniformly 
distributed between 2 and 4. For the utility function in the cloud 
computing system, parameter   is set to 9 and   is set to 1. For the 
other load devices than the data centers, we assume that each of power 
buses 1 to 4 is connected with 3 other load devices, whereas each of 
power buses 5 to 12 is connected with 5 other load devices. For each 

lth load device connected to the ith power bus, parameter      in the 

utility function is set to 2 and parameter      is a uniformly distributed 

random variable between 0.2 and 0.3. 
In the experiment, we consider the interaction system under the 

location-dependent real-time pricing scenario. We compare the 
capabilities in profit maximization and load balancing of the smart 
grid system using the proposed nested game-based optimization 
method and the baseline method. In the baseline system, the smart 
grid controller simply sets the electricity price at every ith power bus to 

be       
 . In other words, the    values are all set to 0, and real-time 

pricing policy is not applied in the baseline system. Table I shows the 
normalized values (with respect to the largest value) of total profit 

              
     

    and load imbalance                
           

    
 
 

of the smart grid system using the proposed nested game-based 
optimization method and the baseline method. Different rows in Table 
I are obtained by adjusting the parameters    and   . 

TABLE I.  NORMALIZED VALUES OF TOTAL PROFIT AND LOAD 

IMBALANCE OF THE SMART GRID SYSTEM 

      
Proposed System Baseline System 

Profit Imbalance Profit Imbalance 

0 1 0.385 0.918 1 

0.5 0.938 0.319 0.890 0.900 

2 0.953 0.192 0.905 0.995 

10 0.908 0.180 0.866 0.763 

  0.883 0.143 0.872 0.701 

We can derive the following observations from Table I. First, 
simultaneously enhancement in the total profit and better load 
balancing can be achieved using the proposed nested game-based 
optimization framework. For example, when        , the 
proposed optimization framework outperforms the baseline method by 
5.3% in total profit of the smart grid system and 79.8% reduction in 
load imbalance. Second, the proposed game theoretic optimization 
framework is extremely powerful in enhancing load balancing 
compared with profit maximization. As shown in Table I, the 
maximum reduction in the load imbalance value is 79.8% compared 
with the baseline method, whereas the maximum enhancement in the 
total profit is 8.3%. Figure 2 illustrates the tradeoff curve (obtained by 
adjusting parameters    and   ) between the higher profit of the 
smart grid and lower load imbalance at different power buses. One can 
observe that the load imbalance value can be significantly reduced 
compared with the baseline method by up to 85% when the total profit 
is the same, thereby demonstrating the effectiveness of the proposed 
game theoretic optimization framework in load balancing. 

 
Fig. 2.  The tradeoff between total profit of the smart grid system and load 

imbalance at different power buses. 

V. CONCLUSION 

In this paper, we consider an interaction system of the smart grid, 
the cloud computing system, and other load devices. We propose a 
nested two stage game-based formulation based on the location-
dependent real-time pricing policy of the smart grid. The leading 
player is the smart grid controller that announces the relationship at 
each power bus between the local electricity price and the total load 
demand. In the second stage, the cloud computing system performs 
request dispatching and resource allocation as response to the pricing 
functions, whereas the other load devices perform demand side 
management. The objective of the smart grid controller is to maximize 
its own profit and perform load balancing among power buses, 
whereas the objective of the cloud computing controller is to 
maximize its own profit with respect to the pricing functions. We 
derive the optimal strategies based on backward induction for the 
smart grid controller, the cloud computing controller, and the other 
load devices, using convex optimization and simulated annealing 
approaches. Since this current approach is only valid for systems 
where network constraints can be neglected, in future works, network 
constraints will be incorporated in the formulation. 
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