
1

Performance-Driven Concurrent
Placement and Gate Sizing for

Deep Submicron Circuits

Wei Chen and Massoud Pedram
Department of EE – Systems

University of Southern California

Outline
! Introduction
! Background
! Algorithm
! Other Work
! Future Directions

2

Introduction (Global View)
! Traditional design flows ignore the

contribution of interconnects to overall
circuit delay

! What is happening?
! Smaller feature sizes (transistors)
! More complex designs
! Faster systems

! Interconnect delay can no longer be
ignored

Interconnect Delay (ITRS 99)

3

Effects of Placement and
Gate Sizing

! Placement
! Assign the cells to suitable locations
! Optimize the interconnect delay
! A poorly placed layout cannot be improved by

a subsequent high quality routing

! Gate Sizing
! Tune the size of each cell
! Optimize the gate delay
! Balance the path delays in the circuit

Sequential Approach
! Flow:

! Performance-driven placement followed by in-place
gate sizing

! Pros:
! Fast (need to solve two smaller independent

problems)

! Cons:
! In-place gate sizing ignores the delay optimization

opportunity with respect to interconnect
! No interaction between the two steps

4

Unification-based Approach
! Flow

! Concurrent performance-driven placement
and gate sizing

! Pros
! Optimizes both interconnect delay and gate

delay at the same time
! Tight interaction between the two steps

! Cons
! Higher complexity (need to solve a much

larger problem)

Previous Works
! Placement

! Minimize wire length
! TimberWolf(Sechen ’85),GORDIAN(Kleinhans ’91)

! Improve performance
! Net-based: SPEED (Riess ’95)
! Path-based: RITUAL (Srinivasan ’91)

5

Previous Works
! Gate Sizing

! Discrete sizing
! Coudert ’96

! Continuous sizing
! Berkelaar ’90

! Concurrent Re-location and Gate Sizing
! Piecewise linear formulation

! Chuang ’94

Outline
! Introduction
! Background
! Algorithm
! Other Work
! Future Directions

6

Placement Problem
! Given a collection of cells with ports on the

boundaries, the dimensions of these cells, and
a collection of nets, the process of placement
consists of finding suitable physical locations
for each cell

! NP-complete
! Traditional objective – minimize wire length
! More recent objective – improve performance

RITUAL – Problem Formulation

j

j

minimize:

s.t.

T PO

T PI

j i i j i j

j j

j j

i j

L(w)

a a d(v ,v) (v ,v) A

a v

a v

d(v ,v) f (

≥ + ∀ ∈≥ + ∀ ∈≥ + ∀ ∈≥ + ∀ ∈

≤ ∀ ∈≤ ∀ ∈≤ ∀ ∈≤ ∀ ∈

≥ ∀ ∈≥ ∀ ∈≥ ∀ ∈≥ ∀ ∈

====

1
1

1
1

j

j

i i i

x
i j

i Sj

y
i j

i Sj

X ,Y) n N

x r j , ...,k
S

y r j , ...,k
S

∈∈∈∈

∈∈∈∈

∀ ∈∀ ∈∀ ∈∀ ∈

= == == == =

= == == == =

∑∑∑∑

∑∑∑∑

7

RITUAL – Lagrangian Relaxation

! Convex formulation
! Transform the original problem

formulation to an unconstrained
optimization problem by using the
Lagrangian multipliers

! For any fixed value of Lagrangian
multipliers, the unconstrained problem has
a simple solution

Lagrangian Relaxation
1

2
+

≤

minimize

s.t.

T Tw Qw b w

Aw c

λ

1 λ
2≥

+ + −
0

max(min()T T T

x
w Qw b w (Aw c)

1 1 λ+ −= − +(k) (k)w Q [A b]

8

RITUAL – Reducing The
Problem Size
! The above problem formulation

becomes too large if we include all the
cells in the circuit

! Reduced active forest (RAF): the set of
paths connecting to the POs that violate
timing requirements

! The problem formulation only contains
timing constraints for RAF

Gate Sizing Problem
! Tune the gate sizes to improve the

critical path delay
! Discrete gate sizing:

! NP-complete

! Continuous gate sizing
! Easy to solve

9

Berkelaar’s Algorithm
! Path-based, similar formulation as RITUAL
! Continuous gate sizing model

! Non-linear load
gate int

gate

load wire i in,i
i fanout(gate)

C
d d c

z

C c z C
∈∈∈∈

= + ⋅= + ⋅= + ⋅= + ⋅

= + ⋅= + ⋅= + ⋅= + ⋅∑∑∑∑

1 1 1 2 1 3

1 2 3

gate , , gate , i in ,i
i

gate n, n, gate n, i in,i
i

d c c z c z C

......

d c c z c z C

≥ − ⋅ + ⋅ ⋅≥ − ⋅ + ⋅ ⋅≥ − ⋅ + ⋅ ⋅≥ − ⋅ + ⋅ ⋅

≥ − ⋅ + ⋅ ⋅≥ − ⋅ + ⋅ ⋅≥ − ⋅ + ⋅ ⋅≥ − ⋅ + ⋅ ⋅

∑∑∑∑

∑∑∑∑

! Piecewise linear

Error in The Linear
Approximation

! Non-convex delay function

x

f(x)

x0

Expected
approxiate
value for

f(x0)

Real
approxiate
value for

f(x0)

10

Concurrent Relocation and
Sizing (Chuang ’94)
! Non-convex delay model

α β

i wire gate
i

wire h max min v max min

gate i , j j i , j
j fanout(i)

c
d (C C)

z

C C (x x) C (y y)

C (z)
∈∈∈∈

= ⋅ += ⋅ += ⋅ += ⋅ +

= − + −= − + −= − + −= − + −

= ⋅ += ⋅ += ⋅ += ⋅ +∑∑∑∑

! Piecewise linearlization of the delay
equation

! Accuracy concerns

Outline
! Introduction
! Background
! Algorithm
! Other Work
! Future Directions

11

Our Problem Definition

! Given a mapped and placed circuit
with the allowed range of gate sizes,
find the best location and size for each
gate in the circuit so as to minimize
the circuit delay

j

dint i.j
rdr i.j

rnet i

cnet i

cload

Our Delay Model

where
k j

i, j i, j i, j j j j j

j j ,k
g fanout(g)

d dint rdr (cload cnet) rnet cload

cload cin
∈∈∈∈

= + ⋅ + + ⋅= + ⋅ + + ⋅= + ⋅ + + ⋅= + ⋅ + + ⋅

==== ∑∑∑∑

gj

di,j

gi

12

Delay Model (Cont’d)
! Gate Sizing Model

! Wire Load Estimation

1 1

2
2

3 3

α β
α

β

α β

i, j j i , j j i , j

i , j
i , j j i , j

j

i , j j i , j j i , j

dint (z) z

rdr (z)
z

cin (z) z

= ⋅ += ⋅ += ⋅ += ⋅ +

= += += += +

= ⋅ += ⋅ += ⋅ += ⋅ +

xneti,max

yneti,max

yneti,min

xneti,min

gi

ρ
ρ

i hor i ,max i ,min ver i ,max i ,min

i hor i ,max i ,min ver i ,max i ,min

cnet [C (xnet xnet) C (ynet ynet)]

rnet [R (xnet xnet) R (ynet ynet)]

= ⋅ − + −= ⋅ − + −= ⋅ − + −= ⋅ − + −
= ⋅ − + −= ⋅ − + −= ⋅ − + −= ⋅ − + −

The Unified Delay Model

! Pin-dependent delay model
! Non-convex

k j

i , j i, j j i , j j hor j ,max j ,min

ver j ,max j ,min j ,k k
g fanout(g)

hor j ,max j ,min ver j ,max j ,min

j ,k k

d dint (z) rdr (z) [C (xnet xnet)

C (ynet ynet) cin (z)]

[R (xnet xnet) R (ynet ynet)]

cin (z)

ρ

ρ

ρ
∈∈∈∈

= + ⋅ ⋅ −= + ⋅ ⋅ −= + ⋅ ⋅ −= + ⋅ ⋅ −

+ ⋅ − ++ ⋅ − ++ ⋅ − ++ ⋅ − +

+ ⋅ − + −+ ⋅ − + −+ ⋅ − + −+ ⋅ − + −

⋅⋅⋅⋅

∑∑∑∑

k jg fanout(g)∈∈∈∈
∑∑∑∑

13

Why avoid Bisectioning
! Traditional placement based on mathematical

programming resort to recursive bisectioning to
achieve uniform cell distribution and/or
improve path delay

! Problems
! Unfixed gate size: cannot keep the partition balance

! Method
! Set variable change region dynamically

Reduce Problem Size
! High problem complexity

! Non-convex delay model
! Numbers of variables and constraints

increase with circuit size

! Method
! Iteratively identify and optimize the critical

sections

14

Motivational Example

! Critical path:C(1)={g0 , g1 , g2 , g3}
! Neighbor (1,1): Ne(1,1)={g4 , g5 , g6 , g7}
! Critical section: C(k)∪ Ne(k,1)

g0 g1

g6 g7

g2

g5g4

g3

g8

g9

Global Problem Formulation

≥ + ∀ ∈

≤ + ∀ ∈

≥ ∀ ∈
start

start

minimize

s.t.

T PO

T PI

cycle

j i i , j i j

j cycle j

j j

t

a a d (v ,v) A

a t v

a v

x̂ − +

− +

− +

≤ ≤ ∀ ∈

≤ ≤ ∀ ∈

≤ ≤ ∀ ∈

i i

i i

i i

i i

i i

i i

ˆx x v C (k)

ˆ ˆy y y v C (k)

ˆ ˆz z z v C(k)

15

Global Problem Formulation
(Cont’d)
! It includes complete timing relations

throughout the circuit
! It is too complicate for large circuits
! If variable change regions can be set correctly

so as to guarantee that the changes in C(k)
will not increase the delay of any path outside
of C(k) beyond that of the current most critical
path, the arrival time variables of the cells
outside C(k) can be dropped from formulation

Critical Path Sizing & Placement

start

start

minimize

s.t.

T

T

cycle

j i i, j i j i j

j cycle j j

j j j

t

a a d (v ,v) A, v ,v C(k)

a t v PO and v C(k)

a v PI and v C(k)

≥ + ∀ ∈ ∈≥ + ∀ ∈ ∈≥ + ∀ ∈ ∈≥ + ∀ ∈ ∈

≤ + ∀ ∈ ∈≤ + ∀ ∈ ∈≤ + ∀ ∈ ∈≤ + ∀ ∈ ∈

≥ ∀ ∈ ∈≥ ∀ ∈ ∈≥ ∀ ∈ ∈≥ ∀ ∈ ∈

ˆ ˆ

ˆ ˆ

ˆ ˆ

i i

i i

i i

i i

i i

i i

x x x v C(k)

y y y v C(k)

z z z v C(k)

− +− +− +− +

− +− +− +− +

− +− +− +− +

≤ ≤ ∀ ∈≤ ≤ ∀ ∈≤ ≤ ∀ ∈≤ ≤ ∀ ∈

≤ ≤ ∀ ∈≤ ≤ ∀ ∈≤ ≤ ∀ ∈≤ ≤ ∀ ∈

≤ ≤ ∀ ∈≤ ≤ ∀ ∈≤ ≤ ∀ ∈≤ ≤ ∀ ∈

16

Dynamic Variable Change
Regions (DVCRs)
! Rationale

! Solution oscillation
! Congestion consideration

! How to calculate the DVCRs
! Determined by the slack time of the fan-ins and fan-

outs
! Reduced in size as the optimization progresses

! Three cases
! Only one gate is repositioned
! Only one gate is resized
! All the critical cells can be resized and relocated

Only Gate gi Is Repositioned
! To determine:

i i i i
ˆ ˆ ˆ ˆx , y , x , y− − + +− − + +− − + +− − + +

gq

gj
gl

gi
gk

gp

! gp gq: critical fan-in and fan-out

! gk gj gl: non-critical fan-ins and fan-
outs

17

DVCR Calculation (Cont’d)

! DVCR induced by fan-in gk

gq

gj gl

gi
gk

gp

∆x

∆y

From the delay equation, calculate
bounding box ∆x, ∆y such that the slack
of gk will always be greater than the
current critical slack if gi is placed inside
the box

DVCR Calculation (Cont’d)

! DVCR induced by fan-out gj and gl
! Similar to fan-in

! DVCR of gi
! Intersection of all the fan-in and fan-out

induced DVCRs

18

Only Gate gi Is Resized

! From the delay equation, fan-in gk
determines the upper-bound zmax so that
the slack of gk will always be greater than
the current critical slack

! Fan-outs gj and gl determine the lower-
bound zmin similarly

gq

gj gl

gi
gk

gp

zmin

zmax

All The Critical Cells Can Be
Resized and Relocated

! Re-convergent problem
! Fan-ins and Fan-outs of C(k) share the slack time

of some common path
! User-defined parameter µ (0<µ<1) to scale down

the DVCR calculated from the above
! µ is decreased gradually

! Perturbation problem
! Maximum location change value
! The smaller of the location DVCR and the above

maximum location change value

19

DVCR Example

! Max size: fan-in slack determined
! Min size: fan-out slack determined
! Location: fan-in & fan-out slack determined

g5

g10

g6

g8
I0

I2

o0

o1

o2

I1

g9

I3

g1 g2

g3 g4

g7

Ne(k,1) Optimization
! Optimization Methods

! Placement of the immediate fan-outs of the
critical paths

! Resizing of the immediate fan-outs of the
critical paths

! Concerns
! Good to do placement and resizing for

Ne(k,1) at the same time
! Too difficult to control the size of Ne(k,1)

20

Neighbor Repositioning

! Linear programming (LP)

start

start

minimize

s.t.

T

T
j

cycle

j i i, j i j

j cycle j

j

i i

t

a a d (v ,v) A

a t v PO

a v PI

ˆ| x x | ∆x

≥ + ∀ ∈≥ + ∀ ∈≥ + ∀ ∈≥ + ∀ ∈

≤ + ∀ ∈≤ + ∀ ∈≤ + ∀ ∈≤ + ∀ ∈

≥ ∀ ∈≥ ∀ ∈≥ ∀ ∈≥ ∀ ∈

− ≤− ≤− ≤− ≤ 1

1

i

i i i

v Ne(k,)

ˆ| y y | ∆y v Ne(k,)

∀ ∈∀ ∈∀ ∈∀ ∈

− ≤ ∀ ∈− ≤ ∀ ∈− ≤ ∀ ∈− ≤ ∀ ∈

Neighbor Resizing

! Geometric Programming

start

start

minimize

s.t.

T

T
j

cycle

j i i, j i j

j cycle j

j

t

a a d (v ,v) A

a t v PO

a v PI

≥ + ∀ ∈≥ + ∀ ∈≥ + ∀ ∈≥ + ∀ ∈

≤ + ∀ ∈≤ + ∀ ∈≤ + ∀ ∈≤ + ∀ ∈

≥ ∀ ∈≥ ∀ ∈≥ ∀ ∈≥ ∀ ∈

21

Three Optimizations

! Reposition the cells directly driven by
the cells on the k most-critical paths
! Linear programming (LP)

! Size down the cells directly driven by
the cells on the k most-critical paths
! Geometric programming (GP)

! Simultaneously size and place the cells
on the k most-critical paths
! Generalized geometric programming (GGP)

Process Steps

Reposition

g0 g1

g6 g7

g2

g5g4

g3

g8

g9

g0 g1

g6 g7

g2

g5g4

g3

g8

g9

Resizing

g0 g1

g6 g7

g2

g5g4

g3

g8

g9

Resizing &
Replacing

g0 g1

g6 g7

g2

g5g4

g3

g8

g9

22

Algorithm Flow

! Iteratively select
and optimize
gates and their
immediate fan-
outs on the k
most-critical paths

Timing
Satisfied

Initial Placement
and Sizing

Timing Analysis

3 Optimization Steps

Yes

End

No

Review of GGP

! GP formulation - Convex problem

! GGP formulation - Non convex problem
0

0 1 2

minimize ()

s.t. () ,

where () is polynomial function, k 0,1,...,m
k

k

p x

p x k , , ...,m

p x

≤ =≤ =≤ =≤ =
====

0

0 1 2

minimize ()

s.t. g () ,

where g () is posynomial function, k 0,1,...,m
k

k

g x

x k , , ...,m

x

≤ =≤ =≤ =≤ =
====

23

GGP Algorithm

! Transform the original GGP problem into a
sequence of (convex) GP problems

! The sequence of optimal solutions to the GP
sequence converges to the optimality of the
original GGP

Condensation

! Weighted arithmetic-geometric (A-G)
mean inequality

! Polynomial function condensation
0 1

δ

δ
δ δwhere 0,

ii
i

i i i

i i i
i

u
u ()

u ,and

≥≥≥≥

> > => > => > => > =

∑∑∑∑ ∏∏∏∏
∑∑∑∑

1

1

δδ

δwhere

i

t

i i
i

t
i

i i
i

C [p(x), x'] [u (x) /]

u (x')
p(x) u (x),

p(x')

====

====

====

= == == == =

∏∏∏∏

∑∑∑∑

24

GGP Transformation

0

0 1 2

0 1

minimize

s.t.

where is polynomial function,
k

k

p (x)

p (x) , k , , ...,m

p (x) k , , ...,m

≤ =≤ =≤ =≤ =
====

0

0 0 0 1 2

0 1

minimize

s.t. ,

where is polynomial function,
k

k

x

p (x) x p (x) , k , , ...,m

p (x) k , , ...,m

≤ ≤ =≤ ≤ =≤ ≤ =≤ ≤ =
====

0

0 0 0 0 1 2

0 1

minimize

s.t.

where is posynomial function,
k k

k k

x

g (x) g (x) x , g (x) g (x) , k , , ...,m

g (x), g (x) k , , ...,m

+ − + −+ − + −+ − + −+ − + −

+ −+ −+ −+ −

− ≤ − ≤ =− ≤ − ≤ =− ≤ − ≤ =− ≤ − ≤ =

====

GGP Transformation, Cont’d

0

0

0 0

1 1 1 2

minimize

s.t. k

k

x

g (x) g (x)
, , k , , ...,m

C [g (x) x ,x'] C [g (x), x']

+ ++ ++ ++ +

− −− −− −− −≤ ≤ =≤ ≤ =≤ ≤ =≤ ≤ =
++++

! The above is a GP problem
! Original constraints are maintained

0

0

0 0

1 1 1 2

minimize

s.t. k

k

x

g (x) g (x)
, , k , , ...,m

g (x) x g (x)

+ ++ ++ ++ +

− −− −− −− −≤ ≤ =≤ ≤ =≤ ≤ =≤ ≤ =
++++

25

Algorithm in Action (I)

! Large freedom of change

Path delay: 12.43 ns Path delay: 12.02 ns

Algorithm in Action (II)

! Small freedom of change

Path delay: 8.27 ns Path delay: 8.22 ns

26

Comparison of Slack Values

! Normalized slack distribution (C499)
! X: ratio of the gate slack compared to the longest path delay
! Y: percentage

0
5

10
15
20
25
30
35
40

0.01 0.03 0.05 0.07 0.09 0.11

Before

After

Experimental Results

0

5

10

15

20

25

C432
C880

C1355

C1908 i6
C499

t4
81

C2670
k2a

C3540

C5315

C7552
des

In-Place Sizing
Our Algorithm

27

Conclusions

! Our algorithm improves circuit timing by
balancing the path delays, i.e., longer
delay paths get shorter at the expense
of shorter delay paths getting longer

! On average 11% improvement
compared to in-place gate sizing

Outline
! Introduction
! Background
! Algorithm
! Other Work
! Future Directions

28

Other Work
! Concerns

! Gate sizing maintains the fixed circuit
topology

! Fan-out optimization balances the circuit
timing by inserting sized buffers/inverters

! Direction
! Concurrent gate sizing and fan-out

optimization

Motivation for Concurrent Gate
Sizing and Fan-out Optimization

g1

g4

g3

gi g2b1

b2

g1

g4

g3

g2
gi

g1

g4

g3

g2
gi

C
rit

ic
al

ity

Original Circuit Resized Circuit Buffered Circuit

Resized & Buffered
Circuit

g1

gi g2b1

g4

g3

29

Motivation Cont’d
! Interleaved Gate Sizing and Fan-out

Optimization, Y.Jiang ’98
! For each multi-pin net in the circuit, try out

both gate sizing and buffer insertion, and
implement the one that yields a better
solution

! Integrated Gate Sizing and Fan-out
Optimization
! This is the focus of the work

Buffer Insertion Delay Model

! Delay of buffer d=τ(p+g·h) where p, g and h
denote the intrinsic delay, logical effort, and
electrical effort, respectively

! Under a required time constraint on gi , the
load of gi is minimized when h1=h2=…=hn

! The path delay of the optimal buffer chain is
calculated as

gj
gi

dbufi,j

h1 h2 hn

i , j i , ji, j (p g h)dbuf x ⋅ + ⋅⋅ + ⋅⋅ + ⋅⋅ + ⋅====

30

Buffer Tree Formulation
! Difficulty

! Topology of the buffer tree is unknown
! Solution

! Recursively split the buffer tree into
separate buffer chains

Formulation

Implementation

Merge and Split
Transformations

! When gains of b1, b11, b12 are the same,
the timing and input capacitance
properties are preserved by the
merge/split transformations

h

h
b3

b11

b12

b2

h
b1

b3

b2

split

merge

31

Buffer Tree Construction
Example

g1

g4

g3

g2
gi gi

g1

g2b11

b12

b13 b21

g3

g4

Size the gates
and build the
buffer chains

gi

g1

g2b1

b2

g3

g4

Merge the
individual
buffer chains

The Complete Delay Model

j ,k

i , j i , j i, j

i , j i , j i , j

k k
i, j i , j i , j j x

k j ,k

delay dbuf dgate

dbuf x (p g h)
cin (z)

dgate dint rdr (z)
(h)

= += += += +
= ⋅ + ⋅= ⋅ + ⋅= ⋅ + ⋅= ⋅ + ⋅

= + ⋅= + ⋅= + ⋅= + ⋅∑∑∑∑

gi gj
gk

delayi,j

rdri,j

xi,j(p+g·hi,j)

dbufi,j dgatei,j

cloadj

32

Summary
! Continuous delay model for concurrent

gate sizing and buffer insertion
! Iteratively optimize the critical paths
! In each iteration, (1)size the critical

gates, (2)build a fan-out tree for the
critical gates, (3) size the non-critical
fan-out gates of the critical gates
simultaneously

Experimental Results

0

2

4

6

8

10

12

14

16

18

20

C49
9

C19
08

C88
0

C13
55

dalu

C35
40 k2

C53
15

C75
52

B+S

S+B

B/S

33

Outline
! Introduction
! Background
! Algorithm
! Other Work
! Future Directions

Buffered Routing Tree Construction
under Buffer Placement Blockages

BlockageSink Source

34

Problem Definition
! Given (1) a set of placement blockages,

where routing is allowed but no buffers
can be placed and (2) the locations of
the source and the pins of a net,
simultaneously build the net topology
and insert sized buffers/inverters at the
places where they are permitted to
improve the timing of the net

Algorithm Outline
! Dynamic programming based
! Generate solutions bottom-up,

implement the optimal solution top-
down

! Hanan graph
! Line search
! Long edge buffering
! Pruning

