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Introduction (Global View)
! Traditional design flows ignore the 

contribution of interconnects to overall 
circuit delay

! What is happening?
! Smaller feature sizes (transistors)
! More complex designs
! Faster systems

! Interconnect delay can no longer be 
ignored

Interconnect Delay (ITRS 99)
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Effects of Placement and 
Gate Sizing

! Placement
! Assign the cells to suitable locations
! Optimize the interconnect delay
! A poorly placed layout cannot be improved by 

a subsequent high quality routing

! Gate Sizing
! Tune the size of each cell
! Optimize the gate delay
! Balance the path delays in the circuit

Sequential Approach
! Flow:

! Performance-driven placement followed by in-place 
gate sizing

! Pros:
! Fast (need to solve two smaller independent 

problems)

! Cons:
! In-place gate sizing ignores the delay optimization 

opportunity with respect to interconnect
! No interaction between the two steps
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Unification-based Approach
! Flow

! Concurrent performance-driven placement 
and gate sizing

! Pros
! Optimizes both interconnect delay and gate 

delay at the same time
! Tight interaction between the two steps

! Cons
! Higher complexity (need to solve a much 

larger problem)

Previous Works
! Placement

! Minimize wire length
! TimberWolf(Sechen ’85),GORDIAN(Kleinhans ’91)

! Improve performance
! Net-based: SPEED (Riess ’95)
! Path-based: RITUAL (Srinivasan ’91)
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Previous Works
! Gate Sizing

! Discrete sizing
! Coudert ’96

! Continuous sizing
! Berkelaar ’90

! Concurrent Re-location and Gate Sizing
! Piecewise linear formulation

! Chuang  ’94

Outline
! Introduction
! Background
! Algorithm
! Other Work
! Future Directions
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Placement Problem
! Given a collection of cells with ports on the 

boundaries, the dimensions of these cells, and 
a collection of nets, the process of placement 
consists of finding suitable physical locations 
for each cell

! NP-complete
! Traditional objective – minimize wire length
! More recent objective – improve performance

RITUAL – Problem Formulation 
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RITUAL – Lagrangian Relaxation

! Convex formulation
! Transform the original problem 

formulation to an unconstrained 
optimization problem by using the 
Lagrangian multipliers

! For any fixed value of Lagrangian
multipliers, the unconstrained problem has 
a simple solution

Lagrangian Relaxation
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RITUAL – Reducing The 
Problem Size
! The above problem formulation 

becomes too large if we include all the 
cells in the circuit

! Reduced active forest (RAF): the set of 
paths connecting to the POs that violate 
timing requirements

! The problem formulation only contains 
timing constraints for RAF

Gate Sizing Problem
! Tune the gate sizes to improve the 

critical path delay
! Discrete gate sizing: 

! NP-complete

! Continuous gate sizing
! Easy to solve
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Berkelaar’s Algorithm
! Path-based, similar formulation as RITUAL
! Continuous gate sizing model

! Non-linear load
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! Piecewise linear

Error in The Linear 
Approximation

! Non-convex delay function
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Concurrent Relocation and 
Sizing (Chuang ’94)
! Non-convex delay model

α β

i wire gate
i
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j fanout( i )

c
d ( C C )

z

C C ( x x ) C ( y y )

C ( z )
∈∈∈∈

= ⋅ += ⋅ += ⋅ += ⋅ +

= − + −= − + −= − + −= − + −

= ⋅ += ⋅ += ⋅ += ⋅ +∑∑∑∑

! Piecewise linearlization of the delay 
equation

! Accuracy concerns 
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Our Problem Definition

! Given a mapped and placed circuit 
with the allowed range of gate sizes, 
find the best location and size for each 
gate in the circuit so as to minimize 
the circuit delay
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Delay Model (Cont’d)
! Gate Sizing Model

! Wire Load Estimation 
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Why avoid Bisectioning
! Traditional placement based on mathematical 

programming resort to recursive bisectioning to 
achieve uniform cell distribution and/or 
improve path delay

! Problems
! Unfixed gate size: cannot keep the partition balance

! Method
! Set variable change region dynamically

Reduce Problem Size
! High problem complexity

! Non-convex delay model
! Numbers of variables and constraints 

increase with circuit size 

! Method
! Iteratively identify and optimize the critical 

sections
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Motivational Example

! Critical path:C(1)={g0 , g1 , g2 , g3}
! Neighbor (1,1): Ne(1,1)={g4 , g5 , g6 , g7}
! Critical section: C(k)∪ Ne(k,1)

g0 g1

g6 g7

g2

g5g4

g3

g8

g9

Global Problem Formulation
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Global Problem Formulation 
(Cont’d)
! It includes complete timing relations 

throughout the circuit
! It is too complicate for large circuits
! If variable change regions can be set correctly 

so as to guarantee that the changes in C(k) 
will not increase the delay of any path outside 
of C(k) beyond that of the current most critical 
path, the arrival time variables of the cells 
outside C(k) can be dropped from formulation

Critical Path Sizing & Placement
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Dynamic Variable Change 
Regions (DVCRs)
! Rationale

! Solution oscillation
! Congestion consideration

! How to calculate the DVCRs
! Determined by the slack time of the fan-ins and fan-

outs
! Reduced in size as the optimization progresses

! Three cases
! Only one gate is repositioned
! Only one gate is resized
! All the critical cells can be resized and relocated

Only Gate gi Is Repositioned
! To determine:

i i i i
ˆ ˆ ˆ ˆx , y , x , y− − + +− − + +− − + +− − + +

gq

gj
gl

gi
gk

gp

! gp gq: critical fan-in and fan-out

! gk gj gl: non-critical fan-ins and fan-
outs
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DVCR Calculation (Cont’d)

! DVCR induced by fan-in gk

gq

gj gl

gi
gk

gp

∆x

∆y

From the delay equation, calculate 
bounding box ∆x, ∆y such that the slack 
of gk will always be greater than the 
current critical slack if gi is placed inside 
the box

DVCR Calculation (Cont’d)

! DVCR induced by fan-out gj and gl
! Similar to fan-in

! DVCR of gi
! Intersection of all the fan-in and fan-out 

induced DVCRs
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Only Gate gi Is Resized

! From the delay equation, fan-in gk
determines the upper-bound zmax so that 
the slack of gk will always be greater than 
the current critical slack

! Fan-outs gj and gl determine the lower-
bound zmin similarly

gq

gj gl

gi
gk

gp

zmin

zmax

All The Critical Cells Can Be 
Resized and Relocated

! Re-convergent problem
! Fan-ins and Fan-outs of C(k) share the slack time 

of some common path
! User-defined parameter µ (0<µ<1) to scale down 

the DVCR calculated from the above
! µ is decreased gradually 

! Perturbation problem
! Maximum location change value
! The smaller of the location DVCR and the above 

maximum location change value
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DVCR Example

! Max size: fan-in slack determined
! Min size: fan-out slack determined
! Location: fan-in & fan-out slack determined

g5

g10

g6

g8
I0

I2

o0

o1

o2

I1

g9

I3

g1 g2

g3 g4

g7

Ne(k,1) Optimization
! Optimization Methods

! Placement of the immediate fan-outs of the 
critical paths

! Resizing of the immediate fan-outs of the 
critical paths

! Concerns
! Good to do placement and resizing for 

Ne(k,1) at the same time
! Too difficult to control the size of Ne(k,1)
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Neighbor Repositioning

! Linear programming (LP)
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Neighbor Resizing

! Geometric Programming
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Three Optimizations

! Reposition the cells directly driven by 
the cells on the k most-critical paths
! Linear programming (LP)

! Size down the cells directly driven by 
the cells on the k most-critical paths
! Geometric programming (GP)

! Simultaneously size and place the cells 
on the k most-critical paths
! Generalized geometric programming (GGP)

Process Steps

Reposition

g0 g1

g6 g7

g2

g5g4

g3

g8

g9

g0 g1

g6 g7

g2

g5g4

g3

g8

g9

Resizing

g0 g1

g6 g7

g2

g5g4

g3

g8

g9

Resizing & 
Replacing

g0 g1

g6 g7

g2

g5g4

g3

g8

g9
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Algorithm Flow

! Iteratively select 
and optimize 
gates and their 
immediate fan-
outs on the k
most-critical paths

Timing 
Satisfied

Initial Placement
and Sizing

Timing Analysis

3 Optimization Steps

Yes

End

No

Review of GGP

! GP formulation - Convex problem

! GGP formulation - Non convex problem
0
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GGP Algorithm

! Transform the original GGP problem into a 
sequence of (convex) GP problems

! The sequence of optimal solutions to the GP 
sequence converges to the optimality of the 
original GGP

Condensation

! Weighted arithmetic-geometric (A-G) 
mean inequality

! Polynomial function condensation
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GGP Transformation

0
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GGP Transformation, Cont’d
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! The above is a GP problem
! Original constraints are maintained
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Algorithm in Action (I)

! Large freedom of change

Path delay: 12.43 ns Path delay: 12.02 ns

Algorithm in Action (II)

! Small freedom of change

Path delay: 8.27 ns Path delay: 8.22 ns
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Comparison of Slack Values

! Normalized slack distribution (C499)
! X: ratio of the gate slack compared to the longest path delay
! Y: percentage
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0

5

10

15

20

25

C432
C880

C1355

C1908 i6
C499

t4
81

C2670
k2a

C3540

C5315

C7552
des

In-Place Sizing
Our Algorithm
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Conclusions

! Our algorithm improves circuit timing by 
balancing the path delays, i.e., longer 
delay paths get shorter at the expense 
of shorter delay paths getting longer

! On average 11% improvement 
compared to in-place gate sizing

Outline
! Introduction
! Background
! Algorithm
! Other Work
! Future Directions
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Other Work
! Concerns

! Gate sizing maintains the fixed circuit 
topology

! Fan-out optimization balances the circuit 
timing by inserting sized buffers/inverters

! Direction
! Concurrent gate sizing and fan-out 

optimization

Motivation for Concurrent Gate 
Sizing and Fan-out Optimization

g1

g4

g3

gi g2b1

b2

g1

g4

g3

g2
gi

g1
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g2
gi

C
rit
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Original Circuit Resized Circuit Buffered Circuit

Resized & Buffered
Circuit

g1

gi g2b1

g4

g3
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Motivation Cont’d
! Interleaved Gate Sizing and Fan-out 

Optimization, Y.Jiang ’98
! For each multi-pin net in the circuit, try out 

both gate sizing and buffer insertion, and 
implement the one that yields a better 
solution

! Integrated Gate Sizing and Fan-out 
Optimization
! This is the focus of the work

Buffer Insertion Delay Model

! Delay of buffer d=τ(p+g·h) where p, g and h
denote the intrinsic delay, logical effort, and 
electrical effort, respectively

! Under a required time constraint on gi , the 
load of gi is minimized when h1=h2=…=hn

! The path delay of the optimal buffer chain is 
calculated  as

gj
gi

dbufi,j

h1 h2 hn

i , j i , ji, j ( p g h )dbuf x ⋅ + ⋅⋅ + ⋅⋅ + ⋅⋅ + ⋅====
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Buffer Tree Formulation
! Difficulty

! Topology of the buffer tree is unknown
! Solution

! Recursively split the buffer tree into 
separate buffer chains

Formulation

Implementation

Merge and Split 
Transformations

! When gains of b1, b11, b12 are the same, 
the timing and input capacitance 
properties are preserved by the 
merge/split transformations

h

h
b3

b11

b12

b2

h
b1

b3

b2

split

merge
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Buffer Tree Construction 
Example

g1

g4

g3

g2
gi gi

g1

g2b11

b12

b13 b21

g3

g4

Size the gates
and build the
buffer chains

gi

g1

g2b1

b2

g3

g4

Merge the
individual
buffer chains

The Complete Delay Model
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delayi,j

rdri,j
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dbufi,j dgatei,j

cloadj
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Summary
! Continuous delay model for concurrent 

gate sizing and buffer insertion
! Iteratively optimize the critical paths
! In each iteration, (1)size the critical 

gates, (2)build a fan-out tree for the 
critical gates, (3) size the non-critical 
fan-out gates of the critical gates 
simultaneously

Experimental Results
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Outline
! Introduction
! Background
! Algorithm
! Other Work
! Future Directions

Buffered Routing Tree Construction 
under Buffer Placement Blockages

BlockageSink Source
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Problem Definition
! Given (1) a set of placement blockages, 

where routing is allowed but no buffers 
can be placed and (2) the locations of 
the source and the pins of a net, 
simultaneously build the net topology 
and insert sized buffers/inverters at the 
places where they are permitted to 
improve the timing of the net

Algorithm Outline
! Dynamic programming based
! Generate solutions bottom-up, 

implement the optimal solution top-
down 

! Hanan graph
! Line search
! Long edge buffering
! Pruning


