Performance-Driven Concurrent Placement and Gate Sizing for Deep Submicron Circuits

Wei Chen and Massoud Pedram
Department of EE - Systems
University of Southern California

Outline

- Introduction
- Background
- Algorithm
- Other Work
- Future Directions

Introduction (Global View)

- Traditional design flows ignore the contribution of interconnects to overall circuit delay
- What is happening?
- Smaller feature sizes (transistors)
- More complex designs
- Faster systems
- Interconnect delay can no longer be ignored

Interconnect Delay (ITRS 99)

Effects of Placement and Gate Sizing
 - Placement

- Assign the cells to suitable locations
- Optimize the interconnect delay
- A poorly placed layout cannot be improved by a subsequent high quality routing
- Gate Sizing
- Tune the size of each cell
- Optimize the gate delay
- Balance the path delays in the circuit

Sequential Approach

- Flow:
- Performance-driven placement followed by in-place gate sizing
- Pros:
- Fast (need to solve two smaller independent problems)
- Cons:
- In-place gate sizing ignores the delay optimization opportunity with respect to interconnect
- No interaction between the two steps

Unification-based Approach

- Flow
- Concurrent performance-driven placement and gate sizing
- Pros
- Optimizes both interconnect delay and gate delay at the same time
- Tight interaction between the two steps
- Cons
- Higher complexity (need to solve a much larger problem)

Previous Works

- Placement
- Minimize wire length
- TimberWolf(Sechen '85),GORDIAN(Kleinhans '91)
- Improve performance
- Net-based: SPEED (Riess '95)
- Path-based: RITUAL (Srinivasan '91)

Previous Works

- Gate Sizing
- Discrete sizing
- Coudert '96
- Continuous sizing
- Berkelaar '90
- Concurrent Re-location and Gate Sizing
- Piecewise linear formulation
- Chuang '94

Outline

- Introduction
- Background
- Algorithm
- Other Work
- Future Directions

Placement Problem

- Given a collection of cells with ports on the boundaries, the dimensions of these cells, and a collection of nets, the process of placement consists of finding suitable physical locations for each cell
- NP-complete
- Traditional objective - minimize wire length
- More recent objective - improve performance

RITUAL - Problem Formulation

minimize: $L(w)$
s.t.

$$
\begin{array}{ll}
a_{j} \geq a_{i}+d\left(v_{i}, v_{j}\right) & \forall\left(v_{i}, v_{j}\right) \in A \\
a_{j} \leq \mathrm{T}_{\mathrm{j}} & \forall v_{j} \in \mathbf{P O} \\
a_{j} \geq \mathrm{T}_{\mathrm{j}} & \forall v_{j} \in \mathbf{P I} \\
d\left(v_{i}, v_{j}\right)=f\left(X_{i}, Y_{i}\right) & \forall n_{i} \in N \\
\frac{1}{\left|S_{j}\right|} \sum_{i \in S_{j}} x_{i}=r_{j}^{x} & j=1, \ldots, k \\
\frac{1}{\left|S_{j}\right|} \sum_{i \in S_{j}} y_{i}=r_{j}^{y} & j=1, \ldots, k
\end{array}
$$

RITUAL - Lagrangian Relaxation

- Convex formulation
- Transform the original problem formulation to an unconstrained optimization problem by using the Lagrangian multipliers
- For any fixed value of Lagrangian multipliers, the unconstrained problem has a simple solution

Lagrangian Relaxation

minimize $\frac{1}{2} \boldsymbol{w}^{T} \boldsymbol{Q} \boldsymbol{w}+\boldsymbol{b}^{T} \boldsymbol{w}$
s.t. $\quad A w \leq c$
$\max _{\lambda \geq 0}\left(\min _{x}\left(\frac{l}{2} \boldsymbol{w}^{T} \boldsymbol{Q} w+\boldsymbol{b}^{T} w+\lambda^{T}(A w-c)\right)\right.$
$\boldsymbol{w}^{(k+1)}=-\boldsymbol{Q}^{-1}\left[\lambda^{(k)} \boldsymbol{A}+\boldsymbol{b}\right]$

RITUAL - Reducing The Problem Size

- The above problem formulation becomes too large if we include all the cells in the circuit
- Reduced active forest (RAF): the set of paths connecting to the POs that violate timing requirements
- The problem formulation only contains timing constraints for RAF

Gate Sizing Problem

- Tune the gate sizes to improve the critical path delay
- Discrete gate sizing:
- NP-complete
- Continuous gate sizing
- Easy to solve

Berkelaar's Algorithm

- Path-based, similar formulation as RITUAL
- Continuous gate sizing model
- Non-linear

$$
\begin{aligned}
& d_{\text {gate }}=d_{\text {int }}+c \cdot \frac{C_{\text {load }}}{z_{\text {gate }}} \\
& C_{\text {load }}=c_{\text {wire }}+\sum_{i \in \text { fanout (gate })} z_{i} \cdot C_{\text {in }, i}
\end{aligned}
$$

- Piecewise linear

$$
\begin{gathered}
d_{\text {gate }} \geq c_{1,1}-c_{1,2} \cdot z_{\text {gate }}+c_{1,3} \cdot \sum_{i} z_{i} \cdot C_{i n, i} \\
\ldots \ldots . \\
d_{\text {gate }} \geq c_{n, 1}-c_{n, 2} \cdot z_{\text {gate }}+c_{n, 3} \cdot \sum_{i} z_{i} \cdot C_{i n, i}
\end{gathered}
$$

Error in The Linear Approximation

- Non-convex delay function

Concurrent Relocation and Sizing (Chuang '94)
 - Non-convex delay model
 $$
\begin{aligned} & d_{i}=\frac{c}{z_{i}} \cdot\left(C_{\text {wire }}+C_{\text {gate }}\right) \\ & C_{\text {wiit }}=C_{h}\left(x_{\text {max }}-x_{\text {mini }}\right)+C_{v}\left(y_{\text {max }}-y_{\text {min }}\right) \\ & C_{\text {gate }}=\sum_{\left.j \in \sum_{\text {manauti } i}\right)}\left(x_{i, j} \cdot z_{j}+\beta_{i, j}\right) \end{aligned}
$$

- Piecewise linearlization of the delay equation
- Accuracy concerns

Outline

- Introduction
- Background
- Algorithm
- Other Work
- Future Directions

Our Problem Definition

- Given a mapped and placed circuit with the allowed range of gate sizes, find the best location and size for each gate in the circuit so as to minimize the circuit delay

Our Delay Model

$d_{i, j}=\operatorname{dint}_{i, j}+$ rdr $_{i, j} \cdot\left(\right.$ cload $_{j}+$ cnet $\left._{j}\right)+$ rnet $_{j} \cdot$ cload $_{j}$ where cload $_{j}=\sum_{g_{k} \in \text { fanout }\left(g_{j}\right)} \operatorname{cin}_{j, k}$

Delay Model (Cont’d)

- Gate Sizing Model $\operatorname{dint}_{i, j}\left(z_{j}\right)=\alpha 1_{i, j} \cdot z_{j}+\beta 1_{i, j}$

$$
\begin{aligned}
& \operatorname{rdr}_{i, j}\left(z_{j}\right)=\frac{\alpha 2_{i, j}}{z_{j}}+\beta 2_{i, j} \\
& \boldsymbol{\operatorname { c i n }}_{i, j}\left(z_{j}\right)=\alpha 3_{i, j} \cdot z_{j}+\beta 3_{i, j}
\end{aligned}
$$

- Wire Load Estimation

cnet $_{i}=\rho \cdot\left[C_{\text {hor }}\left(\right.\right.$ xnet $_{i, \text { max }}-$ xnet $\left._{i, \text { min }}\right)+C_{\text {ver }}\left(\right.$ ynet $_{i, \text { max }}-$ ynet $\left.\left._{i, \text { min }}\right)\right]$ rnet $_{i}=\rho \cdot\left[R_{h_{\text {hor }}}\left(\right.\right.$ xnet $_{i, \text { max }}-$ xnet $\left._{i, \text { min }}\right)+R_{\text {ver }}\left(\right.$ ynet $_{i, \text { max }}-$ ynet $\left.\left._{i, \text { min }}\right)\right]$

The Unified Delay Model

- Pin-dependent delay model

- Non-convex

$$
\begin{aligned}
d_{i, j}= & \operatorname{dint}_{i, j}\left(z_{j}\right)+r d r_{i, j}\left(z_{j}\right) \cdot\left[\rho \cdot C_{\text {hor }}\left(\text { xnet }_{j, \text { max }}-\text { xnet }_{j, \text { min }}\right)\right. \\
& +\rho \cdot \boldsymbol{C}_{\text {ver }}\left(\text { ynet }_{j, \text { max }}-\text { ynet }_{j, \text { min }}\right)+\sum_{g_{k} \in \sum_{\text {fanout }\left(g_{j}\right)}}^{\text {cin } \left._{j, k}\left(z_{k}\right)\right]} \\
& +\rho \cdot\left[\boldsymbol{R}_{\text {hor }}\left(\text { xnet }_{j, \text { max }}-\text { xnet }_{j, \text { min }}\right)+\boldsymbol{R}_{\text {ver }}\left(\text { ynet }_{j, \text { max }}-\text { ynet }_{j, \text { min }}\right)\right] \\
& \cdot \sum_{\left.g_{k} \in \sum_{\text {fanout }\left(g_{j}\right)}\right)} \operatorname{cin}_{j, k}\left(z_{k}\right)
\end{aligned}
$$

Why avoid Bisectioning

- Traditional placement based on mathematical programming resort to recursive bisectioning to achieve uniform cell distribution and/or improve path delay
- Problems
- Unfixed gate size: cannot keep the partition balance
- Method
- Set variable change region dynamically

Reduce Problem Size

- High problem complexity
- Non-convex delay model
- Numbers of variables and constraints increase with circuit size
- Method
- Iteratively identify and optimize the critical sections

Motivational Example

- Critical path: $C(1)=\left\{g_{0}, g_{1}, g_{2}, g_{3}\right\}$
- Neighbor (1,1): $\operatorname{Ne}(1,1)=\left\{g_{4}, g_{5}, g_{6}, g_{7}\right\}$
- Critical section: $C(k) \cup N e(k, 1)$

Global Problem Formulation

minimize $\boldsymbol{t}_{\text {cycle }}$
s.t.

$$
\begin{array}{ll}
\boldsymbol{a}_{j} \geq \boldsymbol{a}_{i}+\boldsymbol{d}_{i, j} & \forall\left(\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right) \in \boldsymbol{A} \\
\boldsymbol{a}_{j} \leq \mathbf{T}_{\text {start }}+\boldsymbol{t}_{\text {cycle }} & \forall \boldsymbol{v}_{j} \in \mathbf{P O} \\
\boldsymbol{a}_{j} \geq \mathbf{T}_{\text {start }} & \forall \boldsymbol{v}_{j} \in \mathbf{P I} \\
\hat{\boldsymbol{x}}_{i}^{-} \leq \boldsymbol{x}_{i} \leq \hat{\boldsymbol{x}}_{i}^{+} & \forall \boldsymbol{v}_{i} \in \boldsymbol{C}(\boldsymbol{k}) \\
\hat{\boldsymbol{y}}_{i}^{-} \leq \boldsymbol{y}_{i} \leq \hat{\boldsymbol{y}}_{i}^{+} & \forall \boldsymbol{v}_{i} \in \boldsymbol{C}(\boldsymbol{k}) \\
\hat{\boldsymbol{z}}_{i}^{-} \leq z_{i} \leq \hat{z}_{i}^{+} & \forall \boldsymbol{v}_{i} \in \boldsymbol{C}(\boldsymbol{k})
\end{array}
$$

Global Problem Formulation (Cont'd)

- It includes complete timing relations throughout the circuit
- It is too complicate for large circuits
- If variable change regions can be set correctly so as to guarantee that the changes in $C(k)$ will not increase the delay of any path outside of $C(k)$ beyond that of the current most critical path, the arrival time variables of the cells outside $C(k)$ can be dropped from formulation

Critical Path Sizing \& Placement

$$
\begin{array}{lll}
\text { minimize } & t_{\text {cycle }} & \\
\text { s.t. } & a_{j} \geq a_{i}+d_{i, j} & \forall\left(v_{i}, v_{j}\right) \in A, v_{i}, v_{j} \in C(k) \\
& a_{j} \leq \mathrm{T}_{\text {start }}+t_{\text {cycle }} \forall v_{j} \in P O \text { and } v_{j} \in C(k) \\
& a_{j} \geq \mathrm{T}_{\text {start }} & \forall v_{j} \in P I \text { and } v_{j} \in C(k) \\
& \hat{\boldsymbol{x}}_{i}^{-} \leq x_{i} \leq \hat{x}_{i}^{+} & \forall v_{i} \in C(k) \\
& \hat{\boldsymbol{y}}_{i}^{-} \leq y_{i} \leq \hat{y}_{i}^{+} & \forall v_{i} \in C(k) \\
& \hat{z}_{i}^{-} \leq z_{i} \leq \hat{z}_{i}^{+} & \forall v_{i} \in C(k)
\end{array}
$$

Dynamic Variable Change

 Regions (DVCRs)- Rationale
- Solution oscillation
- Congestion consideration
- How to calculate the DVCRs
- Determined by the slack time of the fan-ins and fanouts
- Reduced in size as the optimization progresses
- Three cases
- Only one gate is repositioned
- Only one gate is resized
- All the critical cells can be resized and relocated

Only Gate g_{i} Is Repositioned

- To determine: $\hat{x}_{i}^{-}, \hat{y}_{i}^{-}, \hat{x}_{i}^{+}, \hat{y}_{i}^{+}$

- $g_{p} g_{q}$: critical fan-in and fan-out
- $g_{k} g_{j} g_{;}$non-critical fan-ins and fanouts

DVCR Calculation (Cont’d)

- DVCR induced by fan-in g_{k}

From the delay equation, calculate
bounding box $\Delta \mathrm{x}, \Delta \mathrm{y}$ such that the slack
of g_{k} will always be greater than the
current critical slack if g_{i} is placed inside
the box

DVCR Calculation (Cont’d)

- DVCR induced by fan-out g_{j} and g_{l}
- Similar to fan-in
- DVCR of g_{i}
- Intersection of all the fan-in and fan-out induced DVCRs

Only Gate g_{i} Is Resized

- From the delay equation, fan-in g_{k} determines the upper-bound $z_{\text {max }}$ so that the slack of g_{k} will always be greater than the current critical slack
- Fan-outs g_{j} and g_{l} determine the lowerbound $z_{\text {min }}$ similarly

All The Critical Cells Can Be Resized and Relocated

- Re-convergent problem
- Fan-ins and Fan-outs of $C(k)$ share the slack time of some common path
- User-defined parameter $\mu(0<\mu<1)$ to scale down the DVCR calculated from the above
- μ is decreased gradually
- Perturbation problem
- Maximum location change value
- The smaller of the location DVCR and the above maximum location change value

DVCR Example

- Max size: fan-in slack determined
- Min size: fan-out slack determined
- Location: fan-in \& fan-out slack determined

Ne($k, 1$) Optimization

- Optimization Methods
- Placement of the immediate fan-outs of the critical paths
- Resizing of the immediate fan-outs of the critical paths
- Concerns
- Good to do placement and resizing for $\mathrm{Ne}(k, 1)$ at the same time
- Too difficult to control the size of $\mathrm{Ne}(\mathrm{k}, 1)$

Neighbor Repositioning

- Linear programming (LP)
minimize $\boldsymbol{t}_{\text {cycle }}$
s.t. $\quad a_{j} \geq a_{i}+d_{i, j} \quad \forall\left(v_{i}, v_{j}\right) \in A$
$a_{j} \leq \mathrm{T}_{\text {start }}+t_{\text {cycle }} \quad \forall v_{j} \in P O$
$a_{j} \geq \mathrm{T}_{\text {start }} \quad \forall v_{j} \in P I$
$\left|x_{i}-\hat{x}_{i}\right| \leq \Delta x \quad \forall v_{i} \in N e(k, 1)$
$\left|y_{i}-\hat{y}_{i}\right| \leq \Delta y \quad \forall v_{i} \in N e(k, 1)$

Neighbor Resizing

- Geometric Programming minimize $\boldsymbol{t}_{\text {cycle }}$
s.t.

$$
\begin{array}{ll}
a_{j} \geq a_{i}+d_{i, j} & \forall\left(v_{i}, v_{j}\right) \in A \\
a_{j} \leq \mathrm{T}_{\text {start }}+t_{\text {cycle }} & \forall v_{j} \in P O \\
\boldsymbol{a}_{j} \geq \mathbf{T}_{\text {start }} & \forall v_{j} \in P I
\end{array}
$$

Three Optimizations

- Reposition the cells directly driven by the cells on the k most-critical paths
- Linear programming (LP)
- Size down the cells directly driven by the cells on the k most-critical paths
- Geometric programming (GP)
- Simultaneously size and place the cells on the k most-critical paths
- Generalized geometric programming (GGP)

Process Steps

Resizing \& Replacing

Algorithm Flow

- Iteratively select and optimize gates and their immediate fanouts on the k most-critical paths

Review of GGP

- GP formulation - Convex problem minimize $g_{0}(x)$
s.t. $\quad g_{k}(x) \leq 0, \quad k=1,2, \ldots, m$
where $\quad \mathrm{g}_{k}(x)$ is posynomial function, $\mathrm{k}=0,1, \ldots, \mathrm{~m}$
- GGP formulation - Non convex problem minimize $p_{0}(x)$
s.t. $\quad p_{k}(x) \leq 0, \quad k=1,2, \ldots, m$
where $\quad p_{k}(x)$ is polynomial function, $\mathrm{k}=0,1, \ldots, \mathrm{~m}$

GGP Algorithm

- Transform the original GGP problem into a sequence of (convex) GP problems
- The sequence of optimal solutions to the GP sequence converges to the optimality of the original GGP

Condensation

- Weighted arithmetic-geometric (A-G) mean inequality
$\sum_{i} u_{i} \geq \prod_{i}\left(\frac{u_{i}}{\delta_{i}}\right)^{\delta_{i}}$
where $\boldsymbol{u}_{i}>\mathbf{0}, \delta_{i}>0$, and $\sum \delta_{i}=1$
- Polynomial function cíondensation
$\boldsymbol{C}\left[\boldsymbol{p}(x), x^{\prime}\right]=\prod_{i=1}^{t}\left[\boldsymbol{u}_{i}(x) / \delta_{i}\right]^{\delta_{i}}$
where $p(x)=\sum_{i=1}^{t} u_{i}(x), \quad \delta_{i}=\frac{u_{i}\left(x^{\prime}\right)}{p\left(x^{\prime}\right)}$

GGP Transformation

minimize $p_{0}(x)$
s.t. $\quad p_{k}(x) \leq 0, \quad k=1,2, \ldots, m$
where $p_{k}(x)$ is polynomial function, $k=0,1, \ldots, m$
minimize x_{0}
s.t. $\quad p_{0}(x) \leq x_{0}, p_{k}(x) \leq 0, \quad k=1,2, \ldots, m$
where $p_{k}(x)$ is polynomial function, $k=0,1, \ldots, m$
五
minimize $\quad x_{0}$
s.t. $\quad g_{0}^{+}(x)-g_{0}^{-}(x) \leq x_{0}, g_{k}^{+}(x)-g_{k}^{-}(x) \leq 0, \quad k=1,2, \ldots, m$ where $g_{k}^{+}(x), g_{k}^{-}(x)$ is posynomial function, $k=0,1, \ldots, m$

GGP Transformation, Cont’d

minimize \boldsymbol{x}_{0}
s.t. $\quad \frac{g_{0}^{+}(x)}{g_{0}^{-}(x)+x_{0}} \leq 1, \frac{g_{k}^{+}(x)}{g_{k}^{-}(x)} \leq 1, k=1,2, \ldots, m$
$\operatorname{minimize} \boldsymbol{x}_{0}$
s.t. $\quad \frac{g_{0}^{+}(x)}{C\left[g_{0}^{-}(x)+x_{0}, x^{\prime}\right]} \leq 1, \frac{g_{k}^{+}(x)}{C\left[g_{k}^{-}(x), x^{\prime}\right]} \leq 1, k=1,2, \ldots, m$

- The above is a GP problem
- Original constraints are maintained

Algorithm in Action（I）
 －Large freedom of change

Path delay： 12.43 ns

Path delay： 12.02 ns

Algorithm in Action（II）

－Small freedom of change

प111］	ツய1ாாய1！
प1\％117	птт！
Tmmm	Immmmm
（11711］	T11711111010
प17m	1111111110
דImmin	II，
प1111	
［1III	$1 / 91111$
प111	M宜1111\％
प1\％11	－1m
位位位	
¢mimmm	
WImimin	＂Imin townimm
साया1	111\％
T111111	Tr1m
¢！	111\％n！

Path delay： 8.27 ns

Path delay： 8.22 ns

Comparison of Slack Values

- Normalized slack distribution (C499)
- X: ratio of the gate slack compared to the longest path delay
- Y: percentage

Experimental Results

Conclusions

- Our algorithm improves circuit timing by balancing the path delays, i.e., longer delay paths get shorter at the expense of shorter delay paths getting longer
- On average 11% improvement compared to in-place gate sizing

Outline

- Introduction
- Background
- Algorithm
- Other Work
- Future Directions

Other Work

- Concerns
- Gate sizing maintains the fixed circuit topology
- Fan-out optimization balances the circuit timing by inserting sized buffers/inverters
- Direction
- Concurrent gate sizing and fan-out optimization

Motivation for Concurrent Gate

 Sizing and Fan-out Optimization

Motivation Cont'd

- Interleaved Gate Sizing and Fan-out Optimization, Y.J jang '98
- For each multi-pin net in the circuit, try out both gate sizing and buffer insertion, and implement the one that yields a better solution
- Integrated Gate Sizing and Fan-out Optimization - This is the focus of the work

Buffer Insertion Delay Model

- Delay of buffer $d=\tau(p+g \cdot h)$ where p, g and h denote the intrinsic delay, logical effort, and electrical effort, respectively
- Under a required time constraint on g_{i}, the load of g_{i} is minimized when $h_{1}=h_{2}=\ldots=h_{n}$
- The path delay of the optimal buffer chain is calculated as $d \boldsymbol{b} \boldsymbol{u} f_{i, j}=\boldsymbol{x}_{i, j} \cdot\left(\boldsymbol{p}+\boldsymbol{g} \cdot \boldsymbol{h}_{i, j}\right)$

Buffer Tree Formulation

- Difficulty
- Topology of the buffer tree is unknown
- Solution
- Recursively split the buffer tree into separate buffer chains

Merge and Split
 Transformations

- When gains of $b_{1,} b_{11}, b_{12}$ are the same, the timing and input capacitance properties are preserved by the merge/split transformations

Buffer Tree Construction Example

Size the gates and build the buffer chains

Merge the individual buffer chains

The Complete Delay Model

$$
\begin{aligned}
& \text { delay }_{i, j}=\text { dbuf }_{i, j}+\text { dgate }_{i, j} \\
& \text { dbuf }_{i, j}=x_{i, j} \cdot\left(p+g \cdot h_{i, j}\right) \\
& \text { dgate }_{i, j}=\text { dint }_{i, j}+r d r_{i, j}\left(z_{j}\right) \cdot \sum_{k} \frac{\text { cin }_{k}\left(z_{k}\right)}{\left(h_{j, k}\right)_{j, k}}
\end{aligned}
$$

Summary

- Continuous delay model for concurrent gate sizing and buffer insertion
- Iteratively optimize the critical paths
- In each iteration, (1)size the critical gates, (2)build a fan-out tree for the critical gates, (3) size the non-critical fan-out gates of the critical gates simultaneously

Experimental Results

Outline

- Introduction
- Background
- Algorithm
- Other Work
- Future Directions

Problem Definition

- Given (1) a set of placement blockages, where routing is allowed but no buffers can be placed and (2) the locations of the source and the pins of a net, simultaneously build the net topology and insert sized buffers/inverters at the places where they are permitted to improve the timing of the net

Algorithm Outline

- Dynamic programming based
- Generate solutions bottom-up, implement the optimal solution topdown
- Hanan graph
- Line search
- Long edge buffering
- Pruning

