Layout Characterization and Power Density Analysis for Shorted-Gate and Independent-Gate 7nm FinFET Standard Cells

Tiansong Cui, Bowen Chen, Yanzhi Wang, Shahin Nazarian and Massoud Pedram
University of Southern California
Los Angeles, CA, USA
{tcui, bowenche, yanzhiwa, shahin, pedram}@usc.edu

ABSTRACT
In this paper, a power density analysis is presented for 7nm FinFET technology node based on both shorted-gate (SG) and independent-gate (IG) standard cells operating in multiple supply voltage regimes. A Liberty-formatted standard cell library is constructed by selecting the appropriate number of fins for the pull-up and pull-down networks of each logic cell. Next, each cell is characterized by doing SPICE simulations to calculate the propagation delays and output transition times as a function of input transition times and load capacitance values. Finally, the power density of 7nm FinFET technology node is analyzed and compared with the 45 nm CMOS technology node for different circuits. Experimental result shows that the power density of each 7nm FinFET circuit is 3-20 times larger than that of 45nm CMOS circuit under the spacer-defined technology. Experimental result also shows that the back-gate signal enables a better control of power consumption for independent-gate FinFETs.

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Performance Analysis and Design Aids

Keywords
FinFET; Layout; Power Density; Independent Gate Control

1. INTRODUCTION
Thermal effect has gained growing attention to VLSI designers due to the increasing packing density and power consumption of VLSI circuits [1]. The need to reduce the power consumption of digital circuits in order to meet thermal constraints has caused aggressive voltage scaling from the traditional super-threshold regime to the near/sub-threshold regime[2][3]. In addition, with the dramatic downscaling of layout geometries, the traditional bulk CMOS technology is facing significant challenges due to several reasons such as the increasing leakage power and short-channel effects (SCEs) [4]. FinFET devices, a special kind of quasi-planar double gate devices, have attracted a lot of attention as an alternative to the bulk CMOS when technology scales beyond the 32nm technology node, owing to their superior performance [5][6], better scalability [7], lower leakage [8], and stronger immunization to process variations [9].

Due to the promising future of the nanoscale FinFET devices, considerable research efforts have been made to study their models and characteristics. Among all of them, a unique feature of FinFET devices is the independent gate control, i.e., the front gate and the back gate can be controlled by separate signals, which enables more flexible circuit designs [10]. Due to the capacitor coupling of the front gate and the back gate, the threshold voltage of the front-gate-controlled FET varies in response to the back gate biasing, and vice versa [11]. Previous work [12] utilized the independent gate control for FinFETs in the pull-down network of an SRAM cell to keep the 20 \(pA/\mu m \) standby power budget, whereas the authors of [13] studied joint gate sizing and negative biasing on the back gate of FinFET devices and demonstrated significant power reduction.

Although the fabrication and application of independent gate control in FinFET devices have been well researched, none of the previous works have focused on the thermal-effect analysis caused by independent gate control, especially for future ultra-scaled FinFETs. Considering that power-density has a strong and direct impact on the thermal characteristics of VLSI circuits, we present a power density analysis for 7nm FinFET technology node operating in super-threshold and near-threshold operation regimes, including both shorted-gate (SG) and independent-gate (IG) devices based on a created Liberty-formatted standard cell library [7]. For each logic cell in this library, we select the appropriate number of fins for the pull-up and pull-down networks, calculate the delay and power parameters, and then use the lambda-based layout design rules to characterize the FinFET cell layout. All cell layouts are designed using the same height to help with floorplanning flexibility, cell interconnection, and eventually area reduction. Finally, the power density of the 7nm FinFET technology node is analyzed and compared with the state-of-the-art 45nm CMOS technology node for different ISCAS benchmarks by calculating the ratio of total power consumption and estimated area. Experimental results confirm that the power density of a circuit in 7nm FinFET node can be at least 3 to 20 times larger than that in 45nm CMOS node under the spacer-defined technology. In addition, we also apply different voltage levels to the back-gate signal of the independent-gate cells. It shows that the back-gate signal enables a better control of power consumption for independent-gate FinFETs.

The rest of this paper is organized as follows. Section 2 introduces the properties of 7nm FinFET devices including the independent gate control. Section 3 explains the library format and characterization flow. The layout characterization details are elaborated in Section 4. We show the synthesis results as well as the power density reports in Section 5 and conclude the paper in Section 6.

2. BACKGROUND
FinFET devices show better suppression of the short channel effect, lower energy consumption, higher supply voltage scaling
capability, and higher ON/OFF current ratio compared with the bulk CMOS counterparts [6]. In this paper, we focus on 7nm FinFET technology node including both shorted-gate and independent-gate FinFET devices operating in both near-threshold and super-threshold supply voltage regimes. Near-threshold operation regime achieves reduced energy consumption at the cost of degradation of circuit speed. To enable both low power and high performance applications, we perform power density analysis under two supply voltages: 0.3V for near-threshold regime and 0.45V for super-threshold regime.

2.1 7nm FinFET Technology Node

The structure of a 7nm FinFET device is shown in Figure 1. The FinFET device consists of a thin silicon body with thickness of T_{fin}, which is wrapped by gate electrodes. The device is termed quasi-planar as the current flows in parallel with the wafer plane, and the channel is formed perpendicular to the plane. The effective gate length L_{G} is twice as large as the fin height h_{fin}. The spacer length L_{SP} is an important design parameter that directly relates to the short channel effects [14]. The FinFET structure allows for fabrication of separate front and back gates. In this structure, each fin is essentially the parallel connection of the front-gate-controlled FET and the back-gate-controlled FET, both with a width equal to the fin height h_{fin}.

2.2 Independent Gate Control for FinFET Devices

A unique feature of FinFET devices is the independent gate control, where the front and back gates can be tied to the same or different control signals, allowing for more flexible circuit designs. Due to capacitor coupling of the front gate and the back gate of a FinFET transistor, the threshold voltage of the front-gate-controlled FET varies in response to the back-gate voltage, and vice versa [15]. Figure 2 shows the relationship between the threshold voltage of the front-gate-controlled FET and the back-gate voltage from the Hspice simulation. Under a relatively small back-gate voltage, a linear relationship between the change of the threshold voltage of the front-gate-controlled FET and the back-gate voltage is observed (suppose that we consider N-type FETs).

Figure 2: V_{th} of the front-gate-controlled N-type FET vs. back-gate voltage.

Figure 3: Different FinFET-based NAND gate designs.

In this paper, we perform power density analysis based on both shorted-gate and independent-gate 7nm FinFET standard cells. FinFETs operating designed in shorted-gate mode offer the highest driving strength [17], and we consider shorted-gate FinFETs operating in both near-threshold and super-threshold regimes. On the other hand, independent-gate FinFETs are often used in low power implementations, where a reverse-biasing voltage (i.e., the biasing voltage is low for nFETs and high for pFETs) is used to reduce subthreshold leakage [17]. As a result, we consider independent-gate FinFETs operating in only near-threshold regime, but apply different biasing voltage levels.

3. 7NM FINFET STANDARD CELL LIBRARY CHARACTERIZATION

The main goal of this paper is to perform thermal analysis on a given FinFET circuit, which requires the gate-level implementation of the circuit (in shorted-gate mode or independent-gate mode) and thus the characterization of standard cell library is needed. A standard cell library is a set of high-quality timing and power models that accurately and efficiently capture the behavior of standard cells. The standard cell library is widely used in many design tools for different purposes, such as logic synthesis, static timing analysis, power analysis, high-level design language simulation, and so on, as part of Computer-Aided-Design (CAD). The Liberty library format (.lib), which was first invented by Synopsys a decade ago, has become an industrial standard that is adopted by over 100 semi-conductor vendors and implemented in over 75 production electronic design automation (EDA) tools [7]. Therefore, we build our 7nm FinFET standard cell library in the .lib format. The two major steps of building this library are standard cell sizing and power/timing parameter characterization.
Table 1: Summary of logic cells included in 7nm FinFET standard cell library

<table>
<thead>
<tr>
<th>Logic Cell</th>
<th>SG Scale</th>
<th>IG Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter</td>
<td>1X, 2X</td>
<td>1X</td>
</tr>
<tr>
<td>2-input NAND</td>
<td>1X, 2X, 4X, 8X</td>
<td>1X</td>
</tr>
<tr>
<td>3-input NAND</td>
<td>1X, 2X, 4X</td>
<td>1X</td>
</tr>
<tr>
<td>2-input NOR</td>
<td>1X, 2X, 4X, 8X</td>
<td>1X</td>
</tr>
<tr>
<td>3-input NOR</td>
<td>1X, 2X, 4X, 8X</td>
<td>1X</td>
</tr>
<tr>
<td>AND-OR-INV</td>
<td>1X, 2X</td>
<td>1X</td>
</tr>
<tr>
<td>OR-AND-INV</td>
<td>1X, 2X, 4X</td>
<td>1X</td>
</tr>
<tr>
<td>XOR</td>
<td>1X, 2X</td>
<td>1X</td>
</tr>
<tr>
<td>XNOR</td>
<td>1X, 2X</td>
<td>1X</td>
</tr>
<tr>
<td>MUX</td>
<td>1X, 2X</td>
<td>1X</td>
</tr>
<tr>
<td>D-flip-flop</td>
<td>1X</td>
<td></td>
</tr>
<tr>
<td>D-flip-flop w/S/R</td>
<td>1X</td>
<td>1X</td>
</tr>
</tbody>
</table>

3.1 Standard Cell Sizing

The driving strength of a short-gate or independent-gate FinFET device depends on the ratio of fin height and channel length, while both parameters are determined by the fabrication technology. Thus, the FinFET standard cell sizing involves selecting the appropriate number of fins for the pull-up network and pull-down network of each logic cell. The general sizing method is to balance the rise and fall delays of a standard cell. We first investigate the numbers of P-type fins and N-type fins in an inverter that achieve approximately equal rise and fall delays. According to the transregional FinFET model [18], the drain current of a FinFET in the sub- and near-threshold regimes is given by

$$I_{ds} = I_{0} e^{(\frac{(V_{ds} + \alpha V_{th}) - \alpha V_{th}}{m \cdot \lambda V_{ds}}) - n \cdot \alpha V_{th}} - (1 - e^{-V_{th} \cdot \lambda V_{ds}}) (1)$$

where λ is the drain voltage dependency coefficient (similar to but much smaller than the DIBL coefficient for bulk CMOS devices), V_{T0} is the thermal voltage, and I_{0}, α, and m are technology-dependent parameters to be derived using Hspice simulation. In order to achieve equal rise and fall delay, the number of P-type fins N_{P} in an inverter can be determined by

$$N_{P} = N_{N} \cdot \frac{I_{ds,N}}{I_{ds,P}} (2)$$

where $I_{ds,N}$ ($I_{ds,P}$) is the drain current of an N-type(P-type) fin when $V_{ds,N} = V_{ds,P} = V_{DD}$, and N_{N} is the number of N-type fins in the inverter. Based on equation (2) and Hspice simulation, the N_{P}/N_{N} ratio can be determined for different sizes of inverters. We observe that the driving strengths of P-type and N-type fins are balanced for both shorted-gate and independent-gate FinFET inverters using the same size.

We also use the method described in [18] to solve the stack sizing problem and design other combinational and sequential logic cells in near-threshold regime. All the logic cells included in the 7nm FinFET standard cell library are summarized in Table 1. Please note that: (i) For shorted-gate cells, we use the same sizing of FinFET logic cells in the super-threshold regime ($V_{DD} = 0.45V$), since we assume our standard cells support DVS (dynamic voltage and frequency scaling); (ii) As independent-gate logic cells are designed for low-power use, we include only 1X and 2X scales for inverter and 1X scale for all the other cells.

3.2 Power/Timing Parameter Characterization

When the number of fins of each standard cell is determined, the timing parameters and power parameters need to be calculated and stored in 2D look-up-tables (LUTs) in the input/output pin-level [7]. We obtain the timing and power parameters of each logic cell of interest through Hspice simulations at various input and output conditions based on the Verilog-A based 7nm FinFET device model. The timing parameters of a logic cell refer to propagation delays and transition times of the output pin when the output makes a transition. For sequential cells such as D flip-flops and latches, the timing parameters also include time check parameters such as the setup time and hold time of the data signal, and the recovery time and removal time of asynchronous control signals. The propagation delays and transition times are represented by using 2D LUTs, which are indexed by input transition times and capacitive load at the output pin. The power parameters in the Liberty library include the leakage power and internal power of a logic cell. The overall power consumption is evaluated by summing up the leakage power, internal power, and switching power (power consumed when charging and discharging the capacitive load). The internal power accounts for the short-circuit power consumption and dynamic power of the diffusion capacitors at the output pin of the logic cell. Also 2D LUTs are used to store internal power values of the output pin related to each input pin. Detailed characterization steps are omitted in this paper because of space limit.

4. 7NM FINFET STANDARD LAYOUT CHARACTERIZATION

The standard cell library characterization enables synthesis and total power estimation of a certain circuit. In order to analyze the power density of 7nm FinFET technology, we also estimate the total area consumption of a given circuit by designing the layout of each cell based on the lambda-based layout design rules for FinFET devices. In this section, we present the layout of each standard cell based on the sizing result of the previous section, including both shorted-gate and independent-gate cells. Our FinFET layout design rules also consider the interconnection between different cells.

4.1 FinFET Layout Design Rules

General understanding of the FinFET layout density is challenged by its dependence on the specific technology adopted to manufacture the "fin" (which is the core of FinFET) [19]. Figure 4 shows the comparison between the layout of a general CMOS device and a shorted-gate FinFET device with four fins. In this FinFET layout structure, a single strip is used for the gate terminal, while source and drain terminals of multiple fins are connected together through a metal wire to make a wider FinFET device. This is different from CMOS devices.
More precisely, there are two types of FinFET technologies: (1) lithography-defined technology where lithographic constraints limit the fin pitch spacing, and (2) spacer-defined technology which relaxes the constraints on P_{FIN}, and obtains 2x reduction in the value of P_{FIN} at the cost of a more elaborate and costly lithographic process [22]. In this paper, we focus on the layout characterization of 7nm spacer-defined technology in order to perform a pessimistic estimation on power density in 7nm FinFET technology node.

4.2 7nm FinFET Shorted-Gate Standard Cell Layout

Based on FinFET-specific geometries and design rules, the layouts of shorted-gate standard cells can be determined according to the sizing results of each logic cell, which has been shown in Section 3.1. To achieve higher layout flexibility, the number of fins for certain cells has been slightly adjusted. In addition, considering both area consumption and floorplanning flexibility, all the standard cell layouts are designed with the same height. We set the height of all the cells the same as the standard 2-input 2X NAND (equivalently 2X NOR and 4X inverter) cell in order to achieve the best tradeoff between design flexibility and area waste. These three types of cells occupy over 40% of the total number of cells based on our experimental result for different ISCAS benchmarks, and we have verified that using these three types of cells to determine the standard height will achieve the smallest total area consumption for ISCAS circuits. The shared diffusion and width extension can be used when we design the layout of larger cells. Figure 5 shows the layout geometry of some basic cells with different sizes. In our standard cell library, all the gates are designed with a fixed height of 54λ. Inverter 1X, 2X and 4X gates achieve an active width of 27λ and the 2-input NAND gates of both 1X and 2X sizes have an active width of 27λ. The 8X inverter and 2-input 4X NAND gate have active widths of 27λ and 45λ respectively by using shared diffusion and width extension. 2-input NOR gate has the same area consumption as 2-input NAND gate of the corresponding size. Notice that the active width has already included the layout interconnect overhead, which is shared by 6λ per cell.

4.3 7nm FinFET Independent-Gate Standard Cell Layout

The introduction of the independent-gate FinFET brings more associated design rules. After the separation of the gate electrodes, each gate segment must be contacted electrically [23]. Therefore, a contact must be placed on the gate poly line between each pair of fins. A major design rule affecting the IG FinFET layout is the "CA over PC to RX" rule [23]. This rule adds a space of W_{M2M} to the distance between two adjacent fins in order to place a contact on every gate segment between every pair of fins, as seen in Figure 6.

![Figure 5: 7nm FinFET shorted-gate layout of inverters, 2-input NAND gates and 2-input NOR gates with different sizes](image)

![Figure 6: Layout of an independent gate FinFET device with four fins.](image)

The layout of independent-gate standard cells is shown in Figure 7. To maintain the compatibility of FinFET standard cells in different modes, all the IG standard cell layouts are designed with the same height of 9SG standard cells. In addition, considering that the back-gate control (for Pfet or Nfet) is a kind of global signal, we align the back-gate control signals of different standard cells in order to make it easier for interconnection. The width of IG standard cell turns out to be a little wider than the SG standard cell of the same size.
According to the FinFET-specific layout design rules as well as our fixed-height design method, the layout of combinational logic cells and the sequential logic cells can be derived accordingly. The geometries of all the logic cells included in the 7nm FinFET standard cell library are summarized in Table 3.

5. EXPERIMENTAL RESULT AND POWER DENSITY ANALYSIS

To predict the power density values in 7nm FinFET technology, we synthesize various ISCAS benchmark circuits using the developed FinFET standard cell library for both shorted-gate mode (in super-threshold regime and near-threshold regime) and independent-gate mode (in near-threshold regime). The power density value is calculated as the ratio of power consumption and the total area of the circuit. We use 45nm CMOS technology for comparison because there are widely-received libraries and thermal analysis results in this technology node. The same circuits are synthesized using the 45nm CMOS library developed by North Carolina State University (NCSU). All benchmark circuits are synthesized by Synopsys Design Compiler.

In order to estimate the power consumption of each circuit in reality, we assume the circuit is operating in a processor with a frequency of \(f \) and also we consider an activity factor \(\alpha \), which determines the circuit switching activity. The average power consumption of a circuit can be calculated using:

\[
P_{\text{average}} = P_{\text{leakage}} + \alpha \cdot P_{\text{dynamic}} \cdot D \cdot f,
\]

where both the leakage power \(P_{\text{leakage}} \) and the dynamic power \(P_{\text{dynamic}} \) can be found in the power report from Design Compiler. The value \(D \) in this equation represents the circuit delay (which can be found in the timing report) and thus \(P_{\text{dynamic}} \cdot D \) is the average energy consumption per clock cycle (in other words the average energy consumed inside a circuit when it operates on a new input value). In this paper, the \(\alpha \) value is set to be 0.2 and we assume the circuit is operating under a frequency of 500MHz when estimating the average power consumption. Our estimated power density of 45nm CMOS technology matches the previously reported value, which is around 140mW/mm² [24].

We first analyze the power density comparison between 7nm FinFET shorted-gate circuit and 45nm CMOS circuit for different ISCAS benchmarks, which is summarized in Table 4. One can observe that the power density of 7nm FinFET SG circuits can reach over 1500mW/mm² in near-threshold regime and over 2500mW/mm² in super-threshold regime. These values are much higher than the limit of air cooling (around 1000mW/mm² [25]) and careful thermal management will be needed for FinFET devices operating in shorted-gate mode. Notice that the power density in 7nm FinFET technology can be even higher than these values, because we assume the operating frequency is the same for 45nm CMOS and 7nm FinFET technologies, while in reality, FinFET circuits achieve a much better delay and thus the operating frequency can be higher than that of 45nm CMOS circuits [14].

We also apply different back-gate voltage levels to 7nm IG FinFET circuits, and Table 5 summarizes the power density values of IG FinFET designed ISCAS benchmarks. The reverse biasing voltage level \(V_{\text{bias}} \) is set to be 0.05V, 0V and -0.05V. We apply \(V_{\text{bias}} \) to the back-gate voltage of nFETs while the back-gate voltage of pFETs is connected to a voltage level of \((V_{\text{gg}} - V_{\text{bias}}) \). It can be observed that IG FinFET circuits achieve much lower power density values compared with DG FinFET circuits, but even the lowest power density of IG FinFET circuits is still 3 times larger than that of the 45nm CMOS circuit. In addition, the power consumption (as well as the power density) for independent-gate FinFETs can be effectively controlled by the voltage level of \(V_{\text{bias}} \) because back-gate biasing voltage has an impact on the threshold voltage of the front-gate, which will then affect both dynamic power and leakage power consumption. However, the circuit performance will also be degraded when we reduce the voltage level of \(V_{\text{bias}} \). In real FinFET circuit design, we might need to find a suitable \(V_{\text{bias}} \) level in order to achieve an optimal tradeoff between power density and circuit performance.

Notice that the layouts of shorted-gate and independent-gate FinFET standard cells are designed to be compatible with each other. One might include both SG and IG FinFET standard cells in the library of synthesis, which will result in a circuit with both shorted-gate and independent-gate FinFET devices. The power density of this circuit will be between that of the corresponding pure SG FinFET circuit and pure IG FinFET circuit.

6. CONCLUSION

Nanoscale FinFET devices are emerging as the transistor of choice because they allow for higher voltage scalability and design flexibility. In this paper, we present a power density analysis for 7nm FinFET devices under multiple supply voltage regimes, including shorted-gate and independent-gate standard cells and considering both high performance and low power usage. A Liberty-formatted standard cell library is built and the layout of each cell is characterized based on the lambda-based layout design rules for FinFET devices. Finally, the power density of 7nm FinFET technology node is analyzed and compared with the advanced 45nm CMOS technology node for different circuits. It has been confirmed that under spacer-defined technology, the power density of each 7nm FinFET circuit is about 3 to 20 times larger than that of the same circuit in 45nm CMOS node. We have also shown that the back-gate signal enables a better control of power consumption as well as power density for independent-gate FinFETs.

7. ACKNOWLEDGMENTS

This research is sponsored in part by grants from the PERFECT program of the Defense Advanced Research Projects Agency.
8. REFERENCES

