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Abstract—With the increasing demand for energy-efficient 
power delivery network (PDN) in today’s electronic systems, 
configuring an optimal PDN that supports power management 
techniques, e.g., dynamic voltage scaling (DVS), has become a 
daunting, yet vital task. This paper describes how to model and 
configure such a PDN so as to minimize the total energy 
dissipation in DVS-enabled systems, while satisfying total PDN 
cost and/or power conversion efficiency constraints. The 
problem of configuring an energy-efficient PDN under various 
constraints is subsequently formulated by using a controllable 
Markovian decision process (MDP) model and solved 
optimally as a policy optimization problem. The key rationale 
for utilizing MDP for solving the PDN configuration problem 
is to manage stochastic behavior of the power mode transition 
times of DVS-enabled systems. Simulation results demonstrate 
that the proposed technique ensures energy savings, while 
satisfying design goals in terms of total PDN cost and its power 
efficiency.1 

1. INTRODUCTION 
Today’s power-aware electronic systems are holding fast to an 
industry-wide trend to utilize dynamic voltage scaling (DVS)  [1]. 
In such systems, functional blocks (FBs) may be operated at 
different voltage levels at different times. Moreover, a group of 
FB’s that belong to the same voltage domain may require a 
specialized power supply. For example, radio frequency FBs are 
particularly sensitive to noise and are thus best served with a low 
noise linear regulator, while other FBs may be better served by a 
switching regulator. Thus, the design of an energy-efficient power 
delivery network (PDN), which comprises of different types of 
voltage regulator modules (VRMs) and switches and supports 
DVS, has become an important and challenging problem.  
Increasing interest has been given to the problem of modeling and 
configuring an energy-efficient PDN. Selecting the best set of 
VRMs is studied in  [2], where the optimization of the VRM tree 
topology is formulated as a dynamic programming problem. In 
reference  [3], the authors introduce a distributed PDN model 
which can be configured to match the measured impedances in the 
system. The authors in  [4] discuss architectural support for on-chip 
VRM design in a PDN, where the tradeoff between current 
staggering and circuit design of the VRM is analyzed. 
Reference  [5] presents a power management technique that 
exploits the change in DC-DC converter efficiency for embedded 
systems. The authors in  [6] present a PDN analysis flow to 
improve the voltage margins, while considering on-die power 
delivery noise. 
                                                                 
1  This research is supported in part by the National Science 
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Most of the previous works related to PDN design and VRM-
aware dynamic power management (DPM) have focused on i) 
power control without considering the impact of the PDN on the 
overall energy efficiency of the system  [7], and ii) optimal 
construction of a PDN to enable DPM but not considering the 
overheads of power mode transitions and voltage variations  [8]. 
Our work is the first to consider the optimal design of a PDN for a 
DVS-enabled system and simultaneously minimize the total 
system energy under PDN-related cost and “capacity” constraints. 
More precisely, we present a stochastic model of an energy-
efficient PDN using a Markov decision process (MDP) model  [9].  
A power mode transition (from voltage level i to j) is complete 
when the final voltage reaches within a small percentage of its 
final value at all active FB’s. This transition takes a certain, non-
zero time. Unfortunately, its exact duration depends on the number 
of active blocks, their current demands, and the magnitude of 
required current change at the time of transition. This duration also 
depends on any existing voltage droops due to previous transition 
in various sections of the PDN, which have not yet subsided (see 
discussion at the end of section 2). It is very difficult to 
analytically account for all these effects, and hence, it is best to 
model the power mode transition as a random variable with a 
certain probability distribution function. Thus, the key rationale for 
utilizing MDP for solving the optimal VRM-to-FB mapping 
problem is to manage the stochastic behavior of power mode 
transitions inside the system while minimizing the total system 
energy dissipation subject to an upper bound constraint on the cost 
of the PDN and a lower bound constraint on the overall power 
conversion efficiency of the PDN. Improving the energy efficiency 
of the system by capturing the stochastic behavior of the power 
mode transition times and designing an optimal PDN is an 
important step in guaranteeing the quality of system designs.  
The remainder of this paper is organized as follows. Section 2 
provides some preliminaries of the paper, while section 3 describes 
the details of the proposed models for a PDN. Section 4 presents 
an optimization problem formulation. Experimental results and 
conclusions are given in section 5 and section 6. 

2. PRELIMINARIES 
In way of background, recall that a buck converter, often called 
step-down converter, provides output voltage smaller than input 
voltage. If output voltage is greater than input voltage, a boost 
converter, so-called step-up converter, is used. Both buck and 
boost are typically switching converters (push-pull, half-bridge, 
flyback, etc.) with high output current levels based on the use of an 
inductor or a transformer. On the other hand, an LDO voltage 
regulator, which has a very small input-output differential voltage, 
causes lower noise than DC-DC converters since it does not 
involve current switching, hence it produces much lower EMI. 



Configuring a PDN comprised of a number of VRMs and switches 
may be done with the goal of minimizing the power loss in the 
PDN or reducing the cost of the PDN. Power efficiency of a VRM 
is calculated as the ratio of the power that is delivered to the load 
to the power that is extracted from the input source, i.e., 

out out

in in

V I
V I

η ⋅
=

⋅
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where Vout and Iout are voltage and current values of the load, and 
Vin and Iin are those of the input source. Note that in the LDO, 
Iout=Iin. Each VRM has an associated cost which depends on its 
silicon area and cost of its passive elements (e.g., inductor and 
capacitor). Generally, LDO linear regulators are much cheaper 
than switching converters. However, with high input voltages, 
driving loads over 200mA with an LDO becomes very difficult. 
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Figure 1. VRM tree with VRM-to-FB mapping. 

We define a (feasible) VRM-to-FB mapping solution as a mapping 
of the set of VRMs to the set of FBs such that each and every FB 
receives the desired supply voltage level from a VRM capable of 
furnishing the peak required current by that FB. A PDN 
configuration is defined as a rooted VRM tree with VRM-to-FB 
mapping, where the root of the VRM tree is a battery power and 
the sinks are the various voltage level outputs of the PDN. The 
VRM-to-FB mapping describes a one-to-one mapping from sinks 
of the VRM tree to all of the FBs in the design. Figure 1 shows an 
example of PDN configuration, where source, P, in the VRM tree 
is the battery, and there are 4 VRMs as the sink nodes, providing 
the desired voltage and peak current levels to the FBs. For 
example, VRM4 provides fixed output voltage (e.g., 2.5V) to FB2, 
whereas VRM3 provides multiple output voltage levels between 
1.5V and 3.3V to FB1. In this paper, we focus on how to find a 
VRM-to-FB mapping that minimizes the total energy dissipation in 
the system, while constraining the values of cost and power 
conversion efficiency of VRMs used in the VRM tree.  
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Figure 2. An example of voltage droops. 

A VRM which provides multiple output voltage typically employs 
a selectable voltage identification (VID) code, which in turn 
controls its output voltage. For example, the VRM that supports 
Intel Xeon is capable of accepting voltage level changes of 
12.5mV steps every 5us, up to 36 steps (for a total range of 
450mV) in 180us by using VID code  [10]. At the same time, the 
VRM must possess voltage tolerances such as the voltage droops, 

output voltage set-point error, output ripple and noise, no-load 
offset centering error, droop errors, and dynamic load limits, 
which may affect the response time of voltage change, resulting in 
stochastic behavior of the power mode transitions. Figure 2 shows 
an example of voltage droops, where resonances in ZPDN coupled 
with di/dt cause voltage droops when the voltage is scaled rapidly. 
For a typical die, the 1st type of droops occur after nanosecond 
time, and the 2nd type of droops occur less than 1uS after the 
transition, while the 3rd type of droops happen in 10’s of uS, as 
depicted in Figure 2 (b). The details of other tolerances are omitted 
here for brevity. Interested readers may refer to  [10] [12]. 

3. MDP-BASED MODEL OF A DVS-ENABLED SYSTEM 
We exploit standard stochastic modeling techniques to construct 
model of a DVS-enabled system. 

3.1 Background 
A continuous-time Markov decision process (CTMDP) is a 
controllable continuous-time Markov process, which satisfies the 
Markovian property  [9] and takes a set of states s ∈ S, where state 
transition rates are controlled by actions a ∈ A. We consider a cost 
function which assigns a value to each state-action pair by 
adopting a conventional approach, i.e., when the system makes a 
transition from state s to another state s’, it incurs a cost. 

Given a CTMDP with n states, its generator matrix G is defined as 
an n×n matrix, where an entry σs,s’ in G is called the transition rate 
from state s to another state s’. The transition rates may be 
calculated as follows, 

 
, ' '( ) ( ', ) (1/ ( , ')),s s a s a s s s sσ δ τ= ⋅ ≠  (2) 

where τ(s, s’) is a transition time from s to s’, and δ(s’, a) is 1 if s’ 
is the destination state of action a or 0 otherwise. We can calculate 
the limiting distribution (steady) state probabilities of the CTMDP 
from its generator matrix. If the state transition rates are controlled 
by actions chosen from a finite set of actions A, a policy is defined 
as a set of state-action pairs for all the states of the CTMDP.  
The exponential distribution for task inter-arrival times, a 
prominent property of CTMDP model, sometimes leads to 
inaccuracies when modeling real systems. However, it is a 
reasonable assumption to state that the inter-arrival times of 
service requests for each FB are exponentially distributed during 
the active state periods  [13]. This is because in our problem 
formulation, we only care about the state transitions that are in 
effect during the task execution (i.e., the active state period), and 
hence, we can safely assume exponential distribution for the task 
inter-arrival times for each active FB. 

3.2 Model of VRM-to-FB Mapping Problem 
This paper targets an embedded system which has a CPU and k–1 
system devices (i.e., FBs), where the CPU is considered to be FB 
no. 1 whereas other devices are numbered from 2 to k. Each FB 
has a discrete number of performance states corresponding to 
different supply voltage levels and clock frequencies. Every 
application task has to be performed on the CPU, and may require 
support from some (or all) of the FBs. It is assumed that during the 
run time of a task, all FBs whose services are required by the task 
stay in their active mode with a specific voltage level, and enter 
into some low power state (e.g., corresponding to a sleep state, or 
alternatively, an idle state characterized as operating with the 
lowest allowed voltage level) when their services are not required. 
Note that when the voltage value is assigned to a FB, frequency of 
the FB is accordingly and automatically scaled (dynamic 
frequency scaling, DFS) in a manner similar to  [14], where the 
DFS value is generated by a PLL and applied to the corresponding 
FB along with DVS value.  



Figure 3 shows an abstract model of a DVS-enabled system, which 
comprises of three parts: i) power states of the FBs, ii) execution 
time state of the application tasks, and iii) the VRM tree. Let M 
and R denote the set of power states of the various FBs in the 
system under various VRM-to-FB mappings, and the set of 
execution time states of the various FBs in the system for a given 
application.  The CTMDP model of VRM tree is quite simple and 
comprises of a single state with the values of voltage levels and 
maximum output current levels for sinks of the VRM tree specified. 
In the following we describe model of each part. 
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Figure 3. Abstract model of a DVS-enabled system. 

3.2.1 Modeling the Power State of FBs 
The CTMDP model of the power state of each FB is constructed as 
follows. Assume that each state m ∈ M represents a pair 
comprising of VRM mapping c ∈ C (e.g., mapping from VRMs to 
FBs) and a supply voltage level for the FB. Let’s assume that there 
are C = {c1, c2, …, cj} VRM mappings and A = {a1, a2, …, av} 
voltage levels available to the FB. We consider each VRM 
supplies one of the available output voltage levels. Thus, the 
CTMDP model of the power state of the ith FB for a given VRM 
mapping cj includes a state set Mi.j = {mi.cj.1, mi.cj.2, …, mi.cj.v} and a 
parameterized generator matrix Gpower_cj_FBi, where v is the number 
of supply voltage levels available to the FB under a given VRM 
mapping. A state transition out of some state m is controlled by a 
∈ A. Note that VRM mapping cj is fixed for a state set Mi.j. For 
example, if FB1 could be supplied by either VRM1 or VRM2 based 
on its requirement, then there will be two sets of power states for 
FB1, i.e., M1.1 and M1.2. These CTMDP models are exploited 
during optimal VRM-to-FB mapping problem (cf. section 4) to 
select VRMs which minimizes the total system energy.  
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                      (a)                                                   (b) 

Figure 4. Capturing the transition time of DVS. 

A state transition in the CTMDP model of the power state of a FB 
takes τ(m, m’) = max(τDFS, τDVS) when the FB transits from state m 
to another state m’, where τDFS  and τDVS denote the transition time 
of DFS and DVS respectively. The transition time of DVS is 
typically affected by various probabilistic parameters as mentioned 
in section 1. For example, Figure 4 (a) illustrates the voltage 
overshoot waveform, where an output voltage exceeds the desired 
voltage level (i.e., VID) when transitioning from high to low 
current load condition. In this figure, TOS and VOS denote the 
overshoot time and peak voltage above VID, respectively. 
Reducing voltage overshoot and/or undershoot during state 
transition falls outside the scope of the present paper. 
Subsequently, after running a number of simulations, the 
probability density function for the transition time of the ith VRM 
is generated as depicted in Figure 4 (b), where the mean value ui 

may be used as τDVS in this case. For example, Intel Xeon 
processor takes up to 25us for its VRM to stabilize its output 
voltage  [10]. This time varies according to normal distribution 
function.  [11] 
An example of how to construct the CTMDP model of the power 
state of a FB is given next. For simplicity, we assume that there are 
two possible VRM mappings: FB1 is supplied by a buck 
converter2 under mapping c1 or by a buck converter2 under 
mapping c2. Note that each VRM provides a voltage value from a 
finite set of voltage levels A = {a1, a2, a3, a4}, where a1 < a2 < a3 < 
a4 in terms of the voltage values. Then, the abstract CTMDP 
model of the power state can be constructed as shown in Figure 5 
(a), where a node represents a power state and a directed arc 
represents a transition between two states with the parameterized 
generator Gpower-c-FB1. In our example, there are two power state 
sets for FB1, f1, based on the two VRM mappings and four allowed 
voltage levels per mapping, i.e.,  M1.1 = {m(f1,c1,a1), m(f1,c1,a2), 
m(f1,c1,a3), m(f1,c1,a4)}, and M1.2 = {m(f1,c2,a1), m(f1,c2,a2), 
m(f1,c2,a3), m(f1,c2,a4)}. Note that Gpower-c1-FB1 in Figure 5 (b), 
assuming that the response time of the buck converter2 during 
power state transition is different from that of the buck converter1, 
is the generator matrix for FB1 under mapping c1. Furthermore, 
σm,m’ = ∞ means that the power state switches from state m to m’ 
immediately (i.e., m = m’) whereas σm,m’ = 0 means the power state 
can never switch from state m to m’. 
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                      (a)                                                (b) 
Figure 5. Examples of CTMDP model of a power state of FB2:   (a) power 

state transitions and (b) generator matrix. 

3.2.2 Modeling the Execution Time State of Tasks 
Applications for the system can be characterized by their 
workloads, which produce tasks for the FBs. We first define a set 
of threshold values W1 < W2 < … < Wy where threshold value Wz (z 
= 1, …, y) refers to some pre-specified number of clock cycles. 
Here Wy is the least number of clock cycles that if a task takes to 
complete its execution, it will have violated its task execution 
deadline. Each task may now be in one of v execution time states: 
R = {r1, r2, …, ry}. Here r1 represents the task execution time state 
where the corresponding workload is strictly less than W1. 
Similarly, rp (p = 2, …, y) represents the task state where the 
corresponding workload lies between Wp-1 (inclusive) and Wp 
(exclusive). If the application itself is able to tolerate a deadline 
miss, then we can add one more state ry+1, which represents 
workload intensity equal to or higher than Wy. Here, we define the 
miss probability of task h∈H as follows: 

 
, . ,( )miss h h i d h DVSi

P Prob exe T τ= > −∑  (3) 

where Td,h denotes the task’s deadline and τDVS is the delay 
overhead associated with a VRM voltage level change. exeh.i 
denotes the execution time of task h in the ith FB. Notice that the 



summation in the above equation is over all sub-tasks that are 
generated by the task h and run on various FBs.  We can write: 
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where Nh.i is the workload of task h calculated in terms of the 
number of clock cycles required to complete task h in the ith FB. 
Notice that if task h does not need services of the ith FB, then Nh.i is 
equal to zero. xh,i,a represents the percentage of workload of task h 
that is executed when the ith FB is operated at voltage level a; freqa 
denotes the clock frequency corresponding to voltage level a.  
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Figure 6. An example of CTMDP model of a task: application task states 
transitions and generator matrices. 

An example of a CTMDP model of a task execution time for FB1 
is provided in Figure 6, where r1, r2, r3, and r4 represent the ranges 
of clock cycles (e.g., r1 = ( workload < W1), r2 = (W1 ≤ workload < 
W2), r3 = (W2 ≤ workload < W3) and r4 = (workload ≥ W3)). In this 
example, the task can be in one of three states if we do not permit 
deadline misses (cf. Figure 6 (a)) or four states (i.e., state r4 is 
added) if deadline misses are allowed (cf. Figure 6 (b)). The 
transition rates into the state which represents a deadline miss 
(e.g., r4) are determined by QoS (Quality-of-Service) values. A 
state transition between different states in a Gtask-FB takes place 
autonomously. 

3.2.3 Modeling the Global State of the FB 
After constructing the CTMDP models of the FB power state and 
task execution time state, we can proceed to construct the global 
state of the target DVS-enabled system. Let X denote the global 
system state set which is obtained by the Cartesian product of the 
state sets M and R  [15]. The resulting generator matrix GMDVI 
contains transition rates from some global state x = (m,r) to 
another x’ = (m’,r’). Note that the Cartesian product is a direct 
product of sets, i.e., X=M×R = {(m, r) | m ∈ M and r ∈ R}. The 
global generator matrix GMDVI is calculated as the tensor sum  [16] 
of generator matrices Gpower and Gtask. In way of background 
information, the tensor sum C = A⊕B is given by C = A⊗In2 + 
In1⊗B, where n1 is the order of A, n2 is the order of B, Ini is the 
identity matrix of order ni, and ⊗ is the tensor product  [16]. The 
tensor product C = A⊗B is defined as, 
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where a11, a12, a21, and a22 are scalars. 

4. OPTIMAL DESIGN OF THE PDN 
This section presents a mathematical formulation of the optimal 
PDN configuration problem to minimize total system energy.  

4.1 Considerations 
In our problem setup, it is assumed that a battery is used to supply 
power to multiple FBs inside a system by using multiple LDOs, 
buck (step-down), and boost (step-up) converters. Furthermore, 
each VRM provides DVS capability, where a VRM is coupled 
with a D/A converter and controlled through a serial bus to a host 
controller. In the following, we explain how to find the optimal 
mapping (from VRMs to FBs) for a DVS-enabled system such that 
the total energy dissipation is minimized subject to performance, 
cost and power-efficiency constraints. 

4.2 VRM-to-FB Mapping Solution 
Suppose that we are given a number of VRMs. We first generate 
the set of all feasible VRM mappings Cp, where, in each mapping, 
VRMs are assigned to FBs based on their load current and voltage 
requirements. Next, after determining the relevant parameters for 
each global system state x ∈ X and each arc in the CTMDP model 
of a given FB (for given c ∈ Cp), we set up a mathematical 
programming model to solve the energy optimization problem for 
that FB as a linear program. More precisely, similar to  [17], we 
find the optimal policy (set of power states) for the FB in question 
such that the average energy dissipation of that FB is minimized 
while guaranteeing that the FB meets its QoS constraint (i.e., miss 
rate). 
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where  
- xa

xf is the frequency that the system enters global state x when 
action ax is chosen (these are the unknown variables), 
- xa

xτ is the expected time that the system stays in global state x 
when action ax is chosen,  
- xa

xg is the performance cost (e.g., energy dissipation) when the 
FB is in state x and ax is chosen,  
- '

',
xa

x xp  is the probability that the next system state is x if the 

system is currently in state x’ and ax’ is taken,  
- Pmiss.h is a pre-defined QoS value (i.e., the probability of missing 
a target execution deadline) for task h, and 
- Xmiss is a set of states that result in missing the execution deadline. 
Since taking action ax means that the FB goes to power state mx, 
the performance cost xa

xg  may be calculated as follows: 
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where actpowFB.i(mx) is the power consumption of the FB (denoted 
as the ith FB from here on) during active period under power state 
mx (i.e., VRM mapping c and voltage level a), exeh.i is the 
execution time of task h ∈ H on the ith FB, idlpowFB.i(mx) denotes 
the power consumption of the ith FB during idle period under the 
power state mx, Td,h is the execution time deadline of task h, and 
εDVS is the energy consumed during voltage transition by a VRM. 
Note that constraint (9), which specifies the deadline miss 
probability of the FB to be less than some pre-defined probability 



value, Pmiss.h, is optional, depending on the characteristics of FB. 
The problem may be reformulated to allow a deadline miss for 
some of FBs in order to achieve higher energy saving. This is 
possible if the users are not capable of perceiving the resulting 
QoS degradation or do not care about some loss of quality (e.g., in 
the case of multimedia applications  [18]). To solve this 
mathematical problem, MOSEK optimization toolbox  [19] is used. 
After calculating energy dissipations of all FBs based on their 
optimal policies, we find the optimal PDN configuration copt by 
solving the following problem: 

.arg minopt FBi c
c i

c ene
⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑  (11) 

where eneFBi.c is the energy dissipation of the ith FB (i = 1, …, k) 
under the derived optimal policy for VRM-to-FB mapping c ∈ Cp. 
We can find the optimal PDN configuration subject to a cost 
budget and power-efficiency constraint by imposing the following 
two constraints when solving the above problem: 

.c r
r

cost δ<∑  (12) 

.. c r
r

c rw η γ>⋅∑  (13) 

where costc,r is the cost of the rth VRM used in a PDN 
configuration,  δ is a total cost upper bound, wc,r is a weight of the 
VRM, used to calculate the overall efficiency of a given PDN 
configuration, ηc,r is power-efficiency of  the rth VRM, and γ is the 
PDN power efficiency lower bound. 

5. EXPERIMENTAL RESULTS 
Experiments have been designed to evaluate the effectiveness of 
the proposed modeling technique and assess the performance of 
our optimization method. The abstract models and optimization 
technique proposed in this paper have been implemented in C++ 
and Matlab, which allow us to rapidly consider multiple scenarios 
with respect to the magnitude and distribution of variations. A set 
of thirty DC-DC converters and LDOs commercially available 
from Texas Instruments  [20] was used to create a library of VRMs. 

 

Figure 7. PDFs for energy dissipation in terms of missing execution 
deadline. 

We first analyze the performance behavior of FBs to construct the 
CTMDP models, where we rely on abstract models of the FBs 
based on their datasheets. For example, ARM processor in an 

embedded system supports two DVFS values, i.e., a1 = [1.60V 
532MHz] and a2 = [1.35V 266MHz], which consume power 
around 425mW and 219mW for MPEG4 multimedia processing at 
voltage levels a1 and a2, respectively  [22]. Assuming that the 
supply voltage, applied to the ARM processor (when a1 is given), 
is normally distributed with mean value 1.60V between minimum 
1.55V and maximum 1.65V and that the response time (when a1 is 
followed by a2) of a VRM is normally distributed with mean value 
100us between minimum 75us and maximum 125us, the 
probability density functions (PDFs) for energy dissipation in the 
case of no missing deadline, 10% missing deadline, and 20% 
missing deadline can be achieved as shown in Figure 7, which 
indicates that we can achieve some energy savings by allowing 
missing deadline of tasks. 
The following experiment is designed to demonstrate the 
effectiveness of the proposed VRM-to-FB mapping technique. To 
simplify the experimental setup, the cost of each VRM is assumed 
to be its dollar cost for 1k-unit purchase. For example, the cost of 
TPS76301, a 100mA LDO which generates programmable 1.5V to 
6.0V output voltage, is $0.39, whereas the cost of TPS62300, a 
500mA buck converter for the output voltage range from 0.6V to 
5.4V, is $1.50. Then, we construct the CTMDP models for several 
FBs (e.g., CPU, Graphic, WLAN, DSP, etc.) based on literatures 
for informaton of peformance characteristics  [23] [24]. Figure 8 
shows possible PDN configurations for a given system which 
include 6 FBs for simplicity, where we select a number of VRMs 
based on performance requirements from our defined library of 
VRMs. Here, we do not constrain cost and power-efficiency values 
while exploring possible PDN configurations. In this figure, x-axis 
represents the cost value and y-axis represents the overall power-
efficiency of VRMs used in PDN, where various symbols 
represent the range of total power dissipation (W) for the FBs, i.e., 
blue triangle = (power < 6.5), red circle = (6.5 ≤ power < 7), and 
black square = (power ≥ 7). These numbers denote the active 
power consumption values. Here we consider variations in supply 
voltage and the VRM response time (which are different for 
different VRMs).  

 

Figure 8. Trade-off between power-efficiency and cost in PDN. 
 

Next, we investigate the efficiency of the proposed PDN 
configuration technique by comparing it with conventional 
techniques, while constraining cost and power-efficiency values. 
For comparison purpose, we first implement the following PDN 
configuration techniques: 

Table 2. Simulation results for test cases. 



 Test
case

TC3

TC1

TC2

TC4

0% 10% 20%

1.60 1.47 1.35

0.48 0.44 0.40

0.40 0.35 0.32

1.26 1.13 1.08

0% 10% 20%

1.58 1.49 1.32

0.48 0.43 0.39

0.41 0.35 0.31

1.27 1.15 1.01

PDN1 PDN2

0% 10% 20%

1.74 1.56 1.39

0.59 0.50 0.44

0.45 0.40 0.36

1.37 1.23 1.09

OPDN

QoS constraint Savings over PDN1 (%)

0% 10% 20%

-1.2 1.6 -1.7

0.0 -2.3 -2.5

2.4 0.0 -3.2

0.9 1.1 -6.2

Savings over PDN2 (%)

10% 20%0%

PDN3

0% 10% 20%

1.61 1.44 1.28

0.48 0.43 0.38

0.42 0.37 0.33

1.25 1.22 1.00

Savings over PDN3 (%)

10% 20%0%

8.1 6.3 3.0

13.1 11.3 8.7

9.7 11.8 8.9

8.1 7.7 1.4

0.5 -1.5 -5.1

0.0 -3.2 -6.8

3.9 2.8 3.0

-0.6 -1.0 -7.9

QoS constraintQoS constraintQoS constraint
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PDN1:  Apply the proposed technque without considering DVS 
overhead (i.e., no response time). 

PDN2: Apply our proposed technique without considering voltage 
variations. 

PDN3: Same as PDN2 except that the best corner case is used. 
OPDN: Apply our proposed technique, which we call optimal 

PDN, or OPDN for short.  
We define a set of test cases with different workload 
characteristics in terms of percentage of instructions 
accessing/using different types of resources  as shown in Table 1. 
For example, test case TC3 corresponds to a multimedia-intensive 
application where 50% of instructions are performed on the 
graphics processing unit, 20% on the DSP and 30% on the CPU.   

Table 1. Test cases with various workloads. 

 Test
case WLAN

TC1

TC2

TC3

GPS CPU DSP

0.5 0.30.0 0.0 0.0

HDD

0.2

Workload (percentage ratio) 

0.0 0.30.4 0.0 0.3 0.0

0.0 0.30.0 0.5 0.2 0.0

Graphic

TC4 0.0 0.20.0 0.0 0.3 0.5

Test
case WLAN

TC1

TC2

TC3

GPS CPU DSP

0.5 0.30.0 0.0 0.0

HDD

0.2

Workload (percentage ratio) 

0.0 0.30.4 0.0 0.3 0.0

0.0 0.30.0 0.5 0.2 0.0

Graphic

TC4 0.0 0.20.0 0.0 0.3 0.5

In this experiment, it is assumed that FBs are allowed to miss 
deadline considering the QoS constraints. Then, we vary the values 
of of total cost and overall power-efficnecy (ηPDN), i.e., δ and γ, of 
VRMs, while exploring PDN configurations, where we also 
calcualte total energy dissipation of the FBs. Simulation results in 
Table 2, which specifies the PDN configuration constraints (δ = 10 
and γ = 0.75), show normalized total energy disspation of the FBs 
for each test case. It is seen that the PDN1 technique dissipates less 
energy since DVS overhead is not considered. Our technique (i.e., 
OPDN) cannot do any better than the PDN3 which consider the 
best corner case. However, it outperforms the PDN2.  
Given high degree of adaptability of the PDN configuration, our 
approach allows designers to scale product features in terms of 
cost, power-efficiency, and battery life of systems during early 
design cycles. This is a key advantage and value-added of our 
proposed solution in an industrial design flow.  

6. CONCLUSION 
We have described a modeling technique of energy-efficient PDN 
configuration which guarantees to find optimal mappings from 
VRMs to FBs in terms of cost and power-efficiency of VRMs, 
while ensuring system-wide energy savings. The goal with the 
proposed technique, where stochastic models are employed to 
capture uncertain behaviors of performance characteristics of 
VRMs, is to enable very compact embedded system designs, while 
also accelerating their evaluation during design time with aspects 
of energy, cost, power-efficiency, and uncertainty. Experimental 
results demonstrate that the proposed technique achieves large 
performance (power-efficiency) gains under tight cost constraints. 
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