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Abstract — Due to prohibitive cost of datacenter setup and maintenance, many small-scale businesses rely on hosting centers
to provide the cloud infrastructure to run their workloads. Hosting centers host services of the clients on their behalf and
guarantee quality of service as defined by service level agreements (SLAs.) To reduce energy consumption and to maximize
profit it is critical to optimally allocate resources to meet client SLAs. Optimal allocation is a non-trivial task due to two factors:
hosting centers have wide resource heterogeneity where energy consumption of a client task varies depending on the
allocated resources. Second, due to lack of energy proportionality energy cost for a task varies based on server utilization. In
this paper we introduce a generalized Network Flow based Resource Allocation framework, called NFRA, for energy
minimization and profit maximization. NFRA provides a unified framework to model profit maximization under a wide range of
SLAs. We will demonstrate the simplicity of this unified framework by deriving optimal resource allocations for three different
SLAs. We derive workload demands and server energy consumption data from SPECWeb2009 benchmark results to quantify

profit gains obtained by NFRA over a greedy approach and to compare NFRA with a pseudo optimal approach.

Index Terms — Resource allocation, network flow, data center, hosting center, clouds, energy proportionality.

1. INTRODUCTION
Datacenters are the backbone of the growth in e-
commerce and digital services and continue to
grow in size as the demand for information
technology increases. But datacenters themselves are
now faced with a major impediment of power
consumption. A significant fraction of the datacenter
power consumption is due to resource over-
provisioning. A recent EPA report predicts that if
datacenter resources are managed with state-of-the-art
solutions, the power consumption in 2011 can be
reduced from 10 Gigawatts to below 5 Gigawatts [25].
These solutions require perfectly provisioned servers.
Perfect provisioning requires allocating only the
absolute minimum resources for completing the tasks
while meeting the specified SLAs. Perfect provisioning
is difficult to achieve due to two reasons: resource
heterogeneity and lack of energy proportionality. We
provide a brief overview of these two impediments.
Resource Heterogeneity: Datacenter resources
become heterogeneous, even if a datacenter is initially
provisioned with homogeneous resources. For
instance, replacing non-operational servers or adding a
new rack of servers to accommodate demand typically
leads to installing new servers that reflect the advances
in current state-of-the-art. In this research we focus on
performance heterogeneity where servers differ in
CPU speed, memory and disk capacity, which also
leads to heterogeneity in power consumption.
Heterogeneity makes perfect provisioning at the
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datacenter level difficult since different tasks may
occupy different amount of resources across different
servers with varying energy profiles.

Energy Proportionality: Energy proportionality is
the notion that the energy consumed by a resource
must scale linearly with its utilization. Hence, a
perfectly energy proportional server consumes zero
power at zero utilization and its power consumption
increases linearly with utilization. However, servers
typically consume 80% of the peak power even at 20%
utilization [21]. The consequence of this lack of
proportionality is that when a task is assigned to a
server the energy cost of completing that task is
dependent on the resulting server utilization. Hence, it
is insufficient to consider energy cost of operating a
datacenter based solely on the number of active
servers; in fact, it is critical to consider the energy cost
as a function of server utilization.
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Fig. 1 Hosting Center Architecture.

Hosting Centers: We target our research toward
hosting centers in particular, which are an important
incarnation of datacenters. Hosting centers provide
compute services to clients, such as small business
owners, that need computing capabilities of a
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datacenter but do not have the wherewithal to operate
one. Hosting centers may be organized in multiple
ways. The particular organization used in this research
is shown in Fig. 1 where requests from multiple hosting
center clients are first directed to a load distributer.
The load distributer is connected to pools of servers,
where all servers in a pool are homogeneous, but pools
are heterogeneous which is hidden from the clients by
the load distributer. Clients’ requests are in turn
generated by each client’s own end-user requests. For
instance, end users may generate browsing/
purchasing transactions to an e-commerce client which
is in-turn routed to the hosting center. Hosting center
operator and clients are bound by SLAs where hosting
center guarantees a minimum level of service. Each
client can define its own QoS requirement, such as
bounds on response time of a request, or request
throughput. When the hosting center operator fails to
meet SLAs they may even have to pay a penalty to the
client. It is the job of the load distributor to allocate
resources to satisfy client's tasks while making sure
SLAs are met. Conservative resource allocation to meet
SLAs can lead to over provisioning and thus increase
energy consumption thereby reduce profit. On the
other hand under provisioning of resources may lead
to profit loss when operator pays penalty for missing
SLAs or loses customers.

The goal of this research is to provide a unified
framework to maximize profit under a wide range of
SLAs by allocating resources optimally in the presence
of server heterogeneity and lack of energy
proportionality. We will formulate this optimization
problem as a generalized network flow based resource
allocation framework, where nodes in the network
represent server pools and clients and the flow from
server pools to clients represents resource allocation.

1.1 Research Contributions

Previous works ([1][2][3][11][12]) have addressed the
issue of energy minimization and profit maximization
which are covered in more detail in related work
section. We will highlight the research contribution of
this paper particularly in comparison to two closely
related previous works, namely [11] and [12]:

1) NFRA accounts for server heterogeneity. In
particular, it considers how performance and
energy costs scale non-uniformly for different
clients across different servers. Consider two
heterogeneous servers, A and B, and two clients,
X and Y. For client X, server A is able to process
100 requests/second, while server B is able to
process 150 requests/second. Whereas for client Y,
A is able to process 100 requests/second, while B
is able to process 200 requests/second. Thus the
scaling of performance across these two servers in
not the same for the two clients. Such
heterogeneity also exists in energy consumption.
In contrast, experimental results presented in [11]
considered the same service rate across different
resource types for a given class of requests.

2) NFRA accounts for non linear energy cost of
operating a server at different utilization levels. In
[11] the energy cost of operating a server was not
considered as they maximize profit by only
considering generated revenues. In [12] the
authors account for the energy cost of operating a
server using a simple cost model; if a server is ON
it consumes fixed energy whereas if it is OFF it
consumes zero energy. Due to lack of energy
proportionality, the energy cost of servicing a
request can change dramatically at different
utilization levels, which is not considered in [12].

3) NFRA accounts for response time constraints
while minimizing energy costs. Reference [12]
considers energy optimization without taking
into account response time constraints, e.g.,
average or maximum response time not to exceed
the stipulated response time requirement.

2. MODEL PARAMETERS AND ASSUMPTIONS

Let us assume that the hosting center has m
heterogeneous server pools, =1, 2,..., m. All servers
within a given server pool are homogenous. (Note that
we will use servers and resources synonymously in the
remainder of this paper.) Each pool is characterized by
Ci, representing the number of homogenous servers in
pool i. As shown in Fig. 1, each server within a pool is
modeled as a single server queuing system for each of
the clients it is serving. Thus requests of a given client
are distributed across servers where they wait in a
single server queue.

Assuming that the hosting center is hosting n clients,
7=1, 2,..., n, each client is characterized by the following
parameters.

0 Aj: average request arrival rate, in requests per
second, for client j, accounting for any user think
times.

0 ui: average service rate in requests per second for
client j's requests on a server from server pool i at
system utilization U=1. Hence, execution time of
client j’s request on a server from server pool i,
Ti=1/uij. We don’t make any assumptions about the
distribution of random variables A;j and pij.

0 ej: average energy cost in joules per request to
serve a request of client j on server pool i at server
utilization U=1.

O Tjmex: average or maximum tolerable response time
in seconds for client j.

0 fj: stochastic upper bound on the fraction of client
j’'s requests that can violate Tjma, i.e.:

Pr(z, >7 )< p,

where 7; is the response time of a request of client ;.
0 Rj: per request price paid to hosting center by
client j as long as the response time is not larger
than Tj,max.
0 L;: per request penalty incurred on hosting center
by client j whenever the response time exceeds

Tj,max.
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Parameters, Tjmx, B, Rj, Lj, are specified in the SLA.
Usually, the client also provides Aj; if, however, A; is
unavailable at the time granularity of making resource
allocation decisions, then one can use a history based
predictor such as the one in [22] to estimate A;.
Computing pij and ejj is the responsibility of the hosting
center which can be obtained by profiling a given
client workload on each server pool. We demonstrate
one such profiling methodology here, used to derive
the aforementioned parameters in our experiments.

We assume that when the hosting center signs on a
new client, it conservatively allocates servers from
each server pool it has to this client and monitors the
resulting performance in terms of number of requests
served, server utilization, and power consumption. Let
us assume that during such a phase hosting center
allocates Lj servers from server pool i to client j. We
observe at these Li servers, over a period of Oprofic
seconds, that the total number of requests served for a
client j on some server [ of pool i is uij1 and the server
utilization is Ui Based on these values, we obtain
by first scaling the service rate (uiji/Oprofite) using Uii: to
obtain service rate at U=1 at server [ and then taking
average across Lij servers, as shown in eq. (1).

i 1 1
H; =_Z & _aT.J = 4y
I-ij | 5profile Uij,l /uij

Furthermore we also measure the average power
(energy/second) consumed by server [ in server pool i
at utilization Uiy during the period of Oprefie seconds.
Let us denote this power by Pii. Given Pj: and Ui we
obtain Py, server power at U=1 for client j on pool i,
as shown in eq. (2), by first scaling Pj linearly to
obtain power at U=l on server [ and then taking
average across Lij servers.

I
eij = [ Pluj ]; Pij,(l) = L_Z(Pi,idle +(Pij,l - Pi,idle )/U ij.l ) ()
if.(1) ij !

We assume that Piie, idle state server power for
server pool i, is given. Using P we obtain ejj as well,
as shown in eq. (2). Note also that the heterogeneity in
server pools, in terms of processor speed, memory, 10
etc., will be captured by and reflected in pij, Ti and ej.
The Tj and e characterization results presented in
experimental section will help clarify this further (cf.
Fig. 7). Note that we have assumed that any client can
be mapped to any server pool. This is not a limiting
assumption for the proposed framework and is made
solely to simplify the presentation.

3. NFRA FRAMEWORK

In this section we describe a generalized Network
Flow based Resource Allocation framework for energy
minimization and profit maximization in hosting
centers, which we call NFRA.

3.1 Resource Allocation Flow in NFRA
Fig. 2 shows overall flow of the proposed resource
allocation framework. Whenever a new client arrives

the hosting center performs client’s resource and
energy requirement profiling and stores the relevant
data. This profiled data along with profiled data of the
other clients hosting center is serving is fed to NFRA
network flow formulation. This is the crux of the
proposed approach explained in the following section.
Solution to the network flow yields the resource
allocation result which goes to performance
monitoring which constantly evaluates the optimality
of the obtained solution. We present the relevant
details in sensitivity analysis section of experimental
results. Based on the variations observed in the
efficiency of the current solution, the decision to solve
another instance of the resource allocation problem is
taken.

New client
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Fig. 2 Resource allocation flow.

3.2 Brief Introduction to Generalized Networks
Generalized networks [18] are similar to regular
networks. In regular networks each edge from source,
v, to destination, w, is associated with capacity, u. Each
edge has cost, x, which defines the cost of sending one
unit of flow from v to w. In generalized networks the
edge (v, w) of the network has a new parameter called
gain factor, y (y 2 0). If an edge (v, w) has a gain factor
of y, then one unit of flow that leaves node v becomes
y units when it arrives at w. Generalized networks are
useful to model financial systems with interest rates,
oil pipeline networks with leaks, currency exchange
rate problems, and so on. In such problems the
objective is to find the maximum flow, much like
maximum flow in regular networks, into some sink
node t such that the return on the investment is
maximized or the maximum amount of oil is received
at the sink ¢, etc. Based on these parameters we can
characterize each edge (v, w) of the generalized
network by a triplet (y, «, u).

The unique property of generalized network flow
models is their gain factors. We use gain factor to
capture the heterogeneity of server pools in a hosting
center. For example, the execution times, or service
rates, for the requests generated by a client may vary
widely across different server pools due to
heterogeneity. Such differences can be encapsulated as
gain factors as we will show in the next section. Note
that gain factors can also capture other parameters
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affecting hosting center like rising server temperature
which may result in either slowing down servers or
shutting them off. If servers are slowed down using
voltage/frequency scaling or throttled then their
service rate gets affected which can be captured using
gain factors. If the servers are shut down then they can
be removed from the server pool which will reflect in
server pool’s capacity. Thus generalized network
provides a framework to captures various such
parameters which can affect the runtime behavior of a
hosting center.
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Fig. 3 Generalized Network Model for NFRA.

3.3 Modeling Resource Allocation in NFRA

In order to construct a generalized network for hosting
center resource allocation problem, let us assume that
each server pool i and each client j represents a node in
a bi-partite graph. As shown in Fig. 3, the left side of
the bi-partite graph represents a hosting center
comprising of different server pools whereas the right
part of the graph represents different clients. Each
server pool i is connected to a client j by a directed
edge (i, j). Each such edge (i, j) is characterized by a
gain factor, yi;, which captures the amount of service
one unit of server pool i (i.e., one server in that pool)
provides to client j. In other words, one unit of flow
that is sent from server pool i becomes yi serviced
requests when it arrives at client j. Note that yj is the
same as uij when server utilization is 1. For any other
utilization (U < 1), yi < pi.

Furthermore, each edge is characterized by the cost
xij that captures the cost of sending one unit of flow
from node i to node j, which captures the cost of
allocating one unit of server pool i to client j. As we
will explain in Section 3.5, the cost parameter is a
function of the SLA type; in some cases the cost is
purely the energy cost of allocating one server to
satisfy a client’s requests and in other cases the cost
could account for complex profit functions. Finally,
each edge (i, j) in this bipartite graph is assumed to
have capacity ui=c-.

To this bi-partite graph, we add a source node s and
a sink node t. Each server pool node i is connected to s
by an edge (s, 7). The gain factor and cost associated
with this edge are set to: ys=1 and xs=0. The capacity of
such an edge (s, i) is set to be us=Ci. Intuitively this
implies that from node s, we will push flow in terms of
servers, with a maximum of Ci servers, towards a
server pool node i. The sink node ¢ is connected to each
client node j by an edge (j, t). The gain factor and cost
associated with this edge (j, f) are also set to yj=1 and

k=0, while the capacity is set to be uj=A,. Intuitively
this means that from client nodes, we will push flow in
terms of number of serviced requests, with a
maximum of A; serviced requests, onto the edges
towards t. Fig. 3 shows the resulting generalized
network graph where each edge (v, w) is characterized
by the triplet (Yo, Kvw, tow). Such a network is denoted
by G from here on. The value of some flow F in such a
network is defined by the value of the net amount of
flow going into the sink t, i.e.,, the total number of
client requests that can be serviced by the server pools.

Having defined flow F in G as above, the maximum
amount of flow in G, Fum, satisfies the following

inequality:
Fo <4

This equation states that the value of Fuex can never
be more than the sum of request arrival rates. It is
however possible that Fua is less than the sum of the
arrival rates in which case no feasible solution exists in
G that satisfies all the requests of every client. In this
case hosting center may have to some kind of employ
admission control. One such admission control policy
based on the current framework is presented in the
next section.

Note that the solutions achieved through
generalized network are fractional. However under the
assumption, which is not unrealistic, that the number
of requests generated by clients is much larger than the
number of servers hosted, the fractional result does not
have any dire implications. In any case, the fractional
ratio of client request distribution across different
server pools can be achieved over a sufficiently large
time interval.

In order to realize various SLAs, we will modulate
the gain factors yi and associated costs «ij of the edges
in G. The following subsections cover different SLA
types considered in this paper and their corresponding
realizations in G.

3.4 Admission Control in NFRA

Whenever, due to insufficient resources, no feasible
solution exist we must employ admission control to
find a feasible solution that satisfies at least some
requests from all the clients. Admission control is
relatively out of scope for the presented work;
however, in order to demonstrate the strength of
NFRA framework we present an outline of the
admission control policy.

If Fuax is smaller than the sum of arrival rates then
there is no solution that satisfies all the requests from
all the clients. However we did find a min-cost max
flow in the form of Fux implying that there is some
flow going through edges (j, f). If the flow through
such an edge, Fj, is lower than A;j then the admission
control must ensure that only Fji/A; fraction of the
requests from client j are accepted. Furthermore we
can put a lower bound on the flow through edges (j, t)
such that at least a given fraction of client j’s requests
are accepted which is decremented iteratively in some
greedy fashion until we find a feasible solution.
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3.5 SLA Types

3.5.1 Throughput Constraints

Throughput constrained SLA is the simplest form of
SLA, where a client pays a fixed price for meeting its
throughput requirement. Since the price paid is fixed
the hosting center’s profit is purely a function of its
energy consumption. Hence, the objective of profit
maximization translates into energy minimization.

In NFRA, throughput constrained SLA is formulated
as follows. Throughput requirement of client j is
stipulated by A;. Now the maximum throughput
provided by a server of pool i for client j is given by ui,
the service rate. Therefore we simply set the gain
factors yi=pj thus providing maximum possible
throughput and forcing servers to operate at 100%
utilization. Correspondingly the edge costs are set to
be «i=eijuij. This cost essentially represents the power
cost of servicing ui requests per second for client j on a
server from pool i. Finding the min cost max flow in G
thus coincides with minimizing average power
(maximizing expected profit) while meeting the
throughput requirement.

3.5.2 Average Response Time Constraint

Average response time constraint SLA stipulates that
the average per request response time, Tjag for
requests of client j under a given arrival rate A; shall
never exceed Tjmx. The client pays a fixed price for
meeting the average response time constraint. Here the
objective of profit maximization translates into energy
minimization while still honoring the response time
requirement. Note that the response time is a function
of system utilization and, based on queuing theory, as
utilization reduces response time decreases. However
operating servers at lower utilization results in, 1)
increased number of active servers and 2) increased
energy cost due to lack of energy proportionality.

In order to understand the impact of utilization on
server energy let us look at how energy, for a unit of
work done, scales as a function of server utilization.
Assume that a server can process 100 requests/second
at 100% utilization while consuming energy Pa). Per
request energy consumption is given as Pw/100.
Consider that the server performance scales linearly
with utilization, the same server when operating at
80% utilization can satisfy only 80 requests/second
consuming Pos power. DPer request energy
consumption is given as Pw0s/80. The ratio of energy
per request at 80% utilization to energy per request at
100% utilization is defined as Energy Increase Factor
(EIF) representing the scaling of energy per unit of
work at different utilizations with respect to 100%
utilization. More generally EIF at utilization U is given
as, EIFu, in eq. (3),

P
EIF, = — ©)

Py
where Pay is power at utilization U and P is power
at 100% utilization. System is most energy efficient
when EIF=1 which is at U=1. Fig. 4 plots EIF on the

primary Y-axis and scaling of power on secondary Y-
axis vs. utilization. The data for Fig. 4 was obtained
from the SPEC website for SPECWeb2009 [24] Power
benchmarks for the server configuration, HP_C,
detailed in the experimental results section. Even for
more recent generation of servers (HP proliant [28])
the idle power is about 50%. Note that the power value
Pw at different U's was obtained using linear
regression on the power data resulting in Pu= mU +
Pige with m=102.5 and Pin=238.5 where Piu. represents
the idle state power. As shown in the figure, EIF
increases super-linearly as utilization decreases. This
analysis shows that there is a tradeoff between
increasing utilization to reduce the energy cost and
reducing utilization to meet response time constraint.
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Fig. 4 Power and per Request Energy Consumption

In order to account for this tradeoff let us first look at
the average per request response time of client j's
requests on a server from server pool i as a function
server utilization. Let us denote this average per
request response time by Tijawg. Tiawg depends on the
queuing model and distribution of service rate pij and
arrival rate A;. Given that we are considering single
server queuing system, shown in Fig. 1, if arrival and

service rates are Poisson distributed (M/M/1
queue),then Tiaygis given as [20]:
1 1
z-ij,avg = = (4)

H —/1” H (I_Ulj)

where, Aij denotes the effective arrival rate of client j's
requests to a server of pool i, i.e., the number of client
j's requests that are assigned to a server of pool i, and
Ui=Aij/ i denotes the effective per server utilization for
client j on server pool i. If we want to make sure that
Tijwg < Tjimx , then from equation (4) we can upper
bound the per server utilization Uj as follows:
1

U, <i- )

Hi T o
1
Uij.max =1- (6)
ﬂijz-j.max

Since energy efficiency of servers reduces at lower
utilization, we set the utilization Ujj to be equal to Usjmax
as derived in eq. 6. Obviously a reduction in utilization
comes at the expense of reduced effective service rate,
uii. Thus, in order to account for the average response
time constraint, we modify the service rate as shown in
eq. (7). Once the service rate is updated we set the gain
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factors yi to this new service rate. Note that, by
enforcing the upper bound on utilization on every
server, the average response time constraint is met on
every server and is thus met overall.

7ij = /u'ij :Uij,max/uij (7)

The reduction in server utilization results in
increased per request energy cost due to non energy
proportionality. We initially characterized e; at
utilization U=1. We account for increased e’;j as follows:

i, Uij max)
e', =eEIF, =e —_— (8)
ij.(1) ij,max
where Pjw is per server power dissipation value at
utilization U, Pj« is per server power at U=1 for server
pool i and client j. Using e’ we compute the value for
Kij as xi=e’iyij.

Now we have updated all the necessary variables of
our initial generalized network flow formulation, in
order to account for the average response time
constraints. Using this new set of variables finding the
min cost max flow in G will result in an average
response time constrained energy minimizing resource
allocation.

Note that eq. (4) and subsequent analysis assumed
the M/M/1 model. However we can use any other
distribution of service and arrival rate to obtain upper
bound on utilization. For example under G/G/1 model
we can derive the upper bound on utilization as
follows [20]:

T (C§+CiJL+L
Cu)U 2 ey oy

1

u. =
1+ (Cl+C /2 (g 1))
where Ca and Cs are coefficients of variation of request
inter-arrival times and service times, respectively. Rest
of the analysis would use this new upper bound to
compute remaining variables.

One point is worth mentioning here. Since the min
cost max flow in G can yield fractional solution, some
server in server pool i might be shared among multiple
clients. If each client demands a different utilization
(Uy) level from the same server, then it may seem that
the computation of the energy cost e, based on a
given client utilization level, may not hold. However,
if the server is shared in a time multiplexed fashion,
then we shall compute ¢’; at a fine time granularity
only accounting for the duration of time a client j is
assigned to resource i. For example, if a server is
equally shared among two clients, and during the first
half of a second one client uses server at 10%
utilization while during the second half the other client
uses it at 70% utilization, then for each half second we
can compute e for the two clients with the
corresponding utilization levels. Given the assumption
that the number of service requests is much larger than
the available resources, such selection, on average, will
not impact the end result much.

3.5.3 Stochastic Maximum Response Time
Constraint

This is the third and the most complex SLA type we
will use to demonstrate the effectiveness of NFRA.
Under this SLA type, a given client j stipulates its
response time requirement as follows: No more than §;
fraction of requests shall violate the maximum
response time Tjma, i.e., Pr(tj > Tjmex ) < Bj, where 7 is
the response time of a request of client j. As can be
inferred, the client cares about the response time of
every request and therefore the distribution of request
response times and not just the average response time
as was the case in the previous SLA (cf. Section 3.5.2).
We propose to meet this response time constraint by
ensuring that the constraint is met at every server of
pool i to which client j is mapped, much like the
solution for average response time constraint. This
translates into the following requirement: For a given
client j and server pool i, the per request response time
7ij shall not violate the maximum tolerable response
time 7jm« for more than fj fraction of the requests: i.e.,
Pr(tij > Tjme ) < Bj. Hence by imposing f;j of client j on
every server pool i we ensure that the probabilistic
response time guarantee is met at every pool i and
hence is met overall. For our single server queuing
model, this probability can be upper bounded as
shown in eq. (9), for M/M/1 queues [20],

ef(lfUij)ﬂijfj,max Sﬂj (9)

Using the upper bound from eq. (9) to meet the SLA,
we obtain the effective utilization using eq. (10):

U, <t+(ng /uz, )

3.5.3.1 Energy Minimization

We will consider two variants under this SLA. In the
first variant we assume that the client pays the hosting
center a fixed total (lump sum) price, as long as the
hosting center abides by this SLA. For instance, SLA
stipulates that 95% of a client requests shall be
completed within 10 milliseconds (ms). Here, never
does the client pay any incentive if more than 95% of
the requests are satisfied within 10ms; similarly, the
hosting center pays no penalties as long as 95% of the
requests are completed within 10ms. Given this
scenario the hosting center strives to satisfy 95% of the
requests within 10ms — no more, no less. Thus, the
objective of our resource allocation problem in this
scenario is of energy minimization.

Since the energy efficiency of servers reduces at
lower utilization, as mentioned earlier, we set the
utilization to the upper bound provided in eq. (10) as
shown in eq. (11).

U =1+(In g [uz, ) (1

Obviously a reduction in utilization comes at the
expense of reduced effective service rate. Thus, in
order to account for the response time constraint, we
modify the service rate, and therefore the gain factor,
as before, as shown in eq. (7). Note that, since the
probabilistic response time guarantee of eq. (9) is

Pr(Tij >z )S e Hij ~2j)T | max _

j.max

(10)
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provided at every server of pool i to which client j is
mapped, the same guarantee is also provided by server
pool i as a whole. Furthermore, we must account for
the increased per request energy cost due to reduced
server utilization, as before. We account for ¢; increase
as shown in eq. (8) and subsequently update the edge
costs to «ij as before. In essence, once Uijmx is computed
from eq. (11) the rest of variables for the network flow
are computed exactly the same way as we did in
Section 3.5.2. Finding the min cost max flow will result
in stochastic maximum response time constrained
energy minimizing resource allocation.

Note that, in order to obtain Uijmx we assumed
M/M/1 queuing model with exponential service times.
However, for general service time distributions, eq. (9)
can be used as an approximation when service times
have heavy tail distribution [11]. In general, NFRA is
independent of queuing model used (M/M/1 or M/M/2
or any other) and only requires a suitable upper bound
be found on Uj to meet SLA.

3.5.3.2 Profit Maximization

So far we looked at resource allocation that minimizes
energy consumption assuming the client pays a fixed
price as long as the stipulated SLAs are met. However,
when the price paid by the client is dependent on the
quality of service received, the problem of resource
allocation becomes more complex. In this last problem
formulation we assume that the client pays a fixed per
request price, instead of a fixed total (lump sum) price,
as long as the hosting center provides an agreed upon
probabilistic response time guarantee. However, while
providing probabilistic guarantee, the hosting center
pays per request penalty to the client whenever the
response time of a request violates the stipulated
response time requirement. For example, SLA may
stipulate at least 95% of all requests from a particular
client shall be completed within 10ms and whenever
requests are not completed within 10ms the hosting
center may pay a penalty to the client. In this scenario
a client pays for every request that meets response
time requirement, while the hosting center pays a
penalty for every request that fails to meet the
response time requirement. Thus hosting center has an
incentive to meet the maximum response time
requirement of more than 95% of the requests since
this will decrease the penalties hosting center has to
pay and increase the revenues. Thus allocating more
resources can reduce the penalty and hence generate
more revenue, but it can also adversely affect the
energy cost. Therefore profit maximization must
account for generated revenue and energy cost.

Before formulating the problem as generalized
network flow, we will show the relationship between
utilization and profit. Let us assume that request
arrival rate A and service rate u are Poisson with A< u.
The ratio of A to p gives us the utilization, U, of the
system. As defined earlier, the price paid per request is
R as long as the response time 7 < Twa and when 7 >
Tmar hosting center pays a penalty of L (L > 0). Let o
represent the ratio of Tm« to service time 1/y, ie,

o=ptmzx. Assuming M/M/1 model, we can calculate an
upper bound on the probability of failure, g, i.e., Pr(t >
Tmax), as: f=e ™ =7 Given the value of §, the
net price paid per request, 7, is given by eq. (12).
7=RA-p)-Lp 12)
The net profit per request @ is obtained as shown in
eq. (13) where e is the energy cost. Note that, for a
given server, @, 7 and e are functions of the server
utilization.
p=m—¢e 13)
We quantitatively demonstrate how net profit varies
with utilization. Assume that the hosting center
operator sets 300% profit margin over the energy cost,
e1, of servicing a request at utilization U=1. Thus the
price paid per request, R, is 3 times e1. Let L=R. We
obtained e at different U’s using eq. (3) and data of Fig.
4. The graph of net profit per request vs. utilization for
o values of 5, 10 and 15 is shown in Fig. 5.
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Fig. 5 Net Profit per Request at Different Utilization Levels.

Lemma 1: The Profit function @ of eq. (13) is a
concave downwards function.
Proof: Expanding the function @ we get the eq. (14).

4= Ra-g 17V _~1-U)e )= (MU +Rye)/(Ryy*U)) (14)

Without loss of generality let us assume R=L. Let us
denote Pine/Pa=A, which is a constant for any given
server. Taking first and second order derivate of @
with respect to U we get eq. (15) and (16) respectively.

o

-2

5" —2Roe "7 1 AU 15)
U

62

au¢2 =—2(Ro’e""" + AU (16)

Given that A >0, R >0 and o > 0 the second order
derivative of @ with respect to U is negative. Therefore
function @ is concave downwards. B

Thus when system utilization is high the energy cost
per request is low but f (fraction of SLA violations)
increases, thereby causing hosting center to pay
penalties to the client. Conversely when utilization is
low, f may be lower but energy costs increase. Thus
net profit is a complex interplay between system
utilization, energy costs, and probability of missing
response time constraint. Under such a scenario, profit
maximizing resource allocation needs to account for
utilization dependent per request profit, available
resources and response time constraint.
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Response time constraint puts an upper bound on
server utilization as shown in eq. (10). Therefore for
profit maximization, per server utilization of client j on
server pool i must lie in [0, Uijmx]. If we can shrink the
search range [0, Uimx] by providing a better lower
bound for utilization without compromising the
optimality, then the efficiency of our resource
allocation algorithm can be improved. Here we obtain
one such lower bound and establish a theorem of
optimality. Let us denote the utilization, at which the
per request profit function, @y, for a server pool and
client pair (i, j), achieves its maximum value by Uijopt.
Uijipt is server pool and client pair (i, j)'s local optima
for maximum profit. We establish following theorem.

Theorem 1: In the optimal solution to the resource
allocation for maximum profit problem, the utilization
level for any server pool and client pair (i, j) can never
lie below utilization Ui opt.

Proof: Let us assume that the optimal solution uses
some utilization Ui+ for server pool and client pair (3, j)
such that Ui+ < Uijipe. For this Uij+ the corresponding
net profit per request is @j-. Due to concave
(downwards) nature of net profit per request curve @
(Lemma 1) we know that the following relation holds:

(24,/20)|, >0.

This implies that at utilizations higher than U+ but
lower than Ui the net profit per request is strictly
increasing. Now then if we had some fraction xi- of server
pool i allocated to client j to support utilization Ui+, then
we know with certainty that a fraction smaller than xi
can be used (but at higher utilization) to obtain higher net
profit per request. Note that while we use a fraction
smaller than xi+ at higher utilization to obtain higher per
request profit, all the other x:’s, y # i and z # j, remain
unchanged. Therefore rest of the solution does not get
affected. Hence for Ui < Uijpr and for corresponding xi-
we can safely use a fraction smaller than x;- at higher
utilization to improve the solution. This contradicts our
assumption that the optimal solution lies at some optimal
utilization U+ such that Uij* < Uijtopr. M
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Fig. 6 Edge Splitting for Profit Optimization.

Based on theorem 1 we can establish that the optimal
solution must lie between Uiyt and Uijmer of each server
pool and client pair (i, j) as long as we allocate some
resources of pool i to client j. Note that the utilization
level for pair (i, j) introduces a new decision variable in
our resource allocation problem and hence we must find
not only what fraction of pool i to allocate to client j but

also at what utilization level. In our problem formulation
we account for decision variables corresponding to
different utilization levels in the following way: For each
server pool and client pair (i, j) we split the edge (i, j) into
multiple edges corresponding to different utilization
values that lie between Uiyt and Uijme. Because of this
discretization, the new problem formulation will only be
able to provide an approximate solution.

Fig. 6 shows the new graph G’. Figure shows the
splitting of one such edge (i, j) where we divide the range
[Wijiopt, Uijmex] into K levels and add K+1 nodes between
node i and node j. We denote K as the edge splitting
cardinality. Given that the optimal solution lies in [Uiiop,
Uiimx] we are essentially providing an approximation
subject to the quantization error introduced due to edge
splitting cardinality K. The granularity of sweeping the
range [Uiiopt, Uijmex] is only impeded by the computational
complexity. Fine granularity, i.e. bigger edge splitting
cardinality, improves the solution but increases the
computational time. Let us denote each of these K+1
nodes by if for k=1,.., K+1 and assign them a utilization
level Uit. Then for each edge (if, j), shown by dotted thick
edges in Fig. 6, we set the parameters (y, x, u)=(1, 0, <)
whereas for each edge (i, i), shown by solid thick edges,
we set the corresponding parameters as shown in eq. (17).

K Uij,max _Ui],lcpt
UIj :Uu.lom +| ————— |(k=1D
K
(17)

iUk
7ijk = yijk :Uijk'uij ’ eijk =8 L)k
P U
i)
Furthermore for each edge (i, i*) with utilization Ui,
i, the expected price paid per request by client j at
utilization Ui#, changes as well. In order to determine i
let us denote 7i to be the response time of client j on
server pool i at utilization Ui*. Then eq. (18) follows.
Based on eq. (18) we calculate mi* and the net profit per
request, @i, as shown in eq. (19) and (20) respectively.
With this new formulation, from the perspective of server
pools, each of the newly added nodes is considered a
separate client. Moreover, to maximize profit by solving a
min cost max flow problem in G’, the cost on the edges, x,
must be set such that when we minimize the cost, we
maximize the profit. Hence we modify the edge costs as
shown in eq. (21).

Pr(r..k >7r. )= ,b’..k = ei(lfuijk)ﬂim"m1x (18)
i 7 i) =P
r =R (1-B)-LA' (19)
¢ =x"—¢/ (20)
K =47, 21

It is worthwhile mentioning that the new formulation
presented by graph G’ provides us greater flexibility. For
example, much like the price function used in [12], if we
were to model R; as a step function of the response time,
Tif, of client j on server pool i for a given utilization Ui,
then we can modify eq. (18) to account for the new price



To appear in IEEE TRANSACTIONS ON COMPUTERS, 2013.

paid for the improved response time instead of the fixed
price Ri. Note that so far we assumed that Ui was
given. In practice, to find Ujwx we need to solve
6¢ij / 0U = 0. We use Newton’s method to find Usjopt.
o lIterative Edge Splitting

Note that, a given fixed value of edge splitting
cardinality, K, may not be applicable to all the scenarios.
Hence it is advisable to iteratively increase the value of K
until the incremental benefit between two consecutive
iterations falls below a certain threshold. While such an
iterative approach is useful, it is worthwhile mentioning
that as we increase the value of K and therefore increase
the number of utilization levels being introduced between
pair (i, j), they shall be chosen in a manner such that they
are inclusive of the Ui* values from the previous iteration.
This means that if for an iteration with K=K: we chose Ki
utilization levels between pair (i, j) then in the next
iteration with K=Kz K: > Ki, the K: utilization levels
between the pair (i, j) must include the same Ki utilization
levels from the previous iteration and introduce only Kz —
Ki new utilization levels. We call such growth in K,
inclusive growth of edge splitting cardinality. The inclusive
growth of K is necessary to ensure that the new decision
points, in the form of new utilization levels that are being
introduced, contain all the decision points from the
previous iteration and a few new ones. Thus, we ensure
that our solution always improves.

3.6 Solving Min Cost Max Flow in NFRA

For the min cost max flow and max flow problem for
generalized network, the fastest known polynomial time
algorithm is based on interior point linear programming
(LP) methods [19] (O(m'°n?log(nB))). Recently in [18]
Wayne et al. proposed the first polynomial time
combinatorial algorithm for min cost circulation with
time complexity of O(m®n’logB). Given the complexity of
combinatorial approaches we resort to LP to find min cost
max flow solutions presented in this paper.

4. EXPERIMENTAL RESULTS

4.1 Hosting Center and SLA Parameters

Before conducting our experimental evaluations we
explain how we selected the model parameters described
in Section 2. For server heterogeneity we considered four
types of server pools (m=4), each being categorized by a
three tuple {CPU frequency, memory and disk size}. The
four server pools are HP_A = {3.2GHz, 96GB, 2TB}; HP_B
= {3.2GHz, 48GB, 1.5TB Flash}; HP_C = {2.3GHz, 48GB,
1.9TB}; HP_D = {2.3GHz, 48GB, 1.1TB Flash}. HP_B and
HP_D use flash drives, instead of traditional hard drives,
which consume less power per read. Instead of arbitrarily
selecting the server characteristics we selected servers
used in reporting SPECWeb2009 [24] results by various
vendors in the near past.

Briefly, SPECWeb2009 were devised for next
generation web based workloads and consist of four
different workload types: Banking, E-commerce, Support
and Power. Power workload characterizes server power
at different utilizations for E-commerce workload. The

other three workloads operate at 100% utilization by
issuing as many requests as needed to saturate the system
utilization. The request rates from these workloads follow
Poisson distribution. We looked up the published
SPECWeb2009 Power benchmark results to obtain the
power consumption at five different utilization levels. We
then used linear interpolation to derive the EIF value at
any utilization. We treated SPECWeb2009 Banking, E-
Commerce and Support workloads as three different
customer types. We again relied on the published results
to obtain the energy per request of each workload type on
each server type (ej) and the per request execution time
(T) on each server type using the profiling methodology
presented in section 2.

o

-

N
|

o
-
|

0.08 +

o,

Energy per Request g; (Joules)
o o o

S 2 8

; \

o

HP_A HP_B HP_C

Server Pool

HP_D

Fig. 7 Energy and Response Time Characterization.

Fig. 7 shows e;j on primary Y-axis (dotted lines) and Ty
on the secondary Y-axis, for the three workload types
(equivalent to clients in Fig. 1) and the four server types
(equivalent to server pools in Fig. 1). Note that Tjj values
for different workload types do not necessarily scale in a
similar manner across different server types. For example,
for E-commerce and Banking workloads Tij value reduces
from pool HP_A to HP_B, while it increases for Support.
Thus the heterogeneity in servers can alter workload
behaviors (ej and Tjy) in a complex manner.

We created two hosting center setups using the four
server types by choosing the corresponding Ci values
(number of servers in each pool) as follows: config_A:
{HP_A, HP_B, HP_C, HP_D}={10, 10, 10, 10} and
config B=({9, 9, 11, 11}. We also assume that we have three
Banking clients, three E-commerce clients and two
Support clients, a total of eight clients, i.e., n=8. We
formulate three different instantiations using these eight
clients, called Instance_1, Instance_ 2 and Instance_3
workloads. Instance_1 is banking dominated, i.e., load
generated due to banking clients dominates. Similarly
Instance_2 and Instance_3 workloads are E-commerce and
Support dominated, respectively. Table 1 shows the SLA
parameters for the eight clients for Instance_1. The clients
within a particular instance differ in the number of
requests sent to the hosting center. For example, small
scale (SS) Banking client generates 70K requests per
second while large scale (LS) Banking client generates
98K requests per second, 40% more. We also assume that
E-commerce and Banking clients have more stringent
response time requirements than Support clients.
Furthermore, the SLA specification for LS clients has
lower tolerance for response time violation and hence has
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lower B;. But they are also willing to pay a premium, in
terms of higher profit margins for the hosting center,
denoted by M; in Table 1, representing the profit margin
percent over average per request energy cost across all
server pools. Furthermore we assume that Ri=L;.

It is worth noting that the values we selected for
various parameters shown in Table 1 roughly reflect the
relative importance of clients. The absolute values were
arbitrarily selected while preserving the relative
importance. Note that client SLA parameters across
different instantiations change only in terms of arrival
rates leaving rest of the parameters, i.e., Tjmsx, fi, M
unchanged. For the sake of brevity we omit the arrival
rates of other instance types. Furthermore, in the interest
of space, experimental results presented here assume
Poisson arrival and service rates. Note that the framework
itself can support other distributions as mentioned earlier.
We implemented the min cost max flow using the LP
package Ipsolve [26].

Table 1: Client SLA specification for Instance_1

Client Type J A ¥ max 6 | M;
[{msec)

Bank (LS) 1 98K 15 0.05 | 80
Bank (MS) 2 82K 15 0.08 | 60
Bank (SS) 3 70K 15 0.1 40
Ecomm (LS) 4 41K 12 0.05 | 80
Ecomm(MS) 5 36K 12 0.08 | 60
Ecomm (MS) 6 20K 12 0.1 | 40
Support (MS) 7 8K 120 0.6 | 60
Support (SS) 8 4K 120 0.8 | 50

4.2 Psuedo Optimal Solution

NFRA generates conservative resource assignments by
ensuring that a constraint is met at every server of pool i
to which client j is mapped. For instance, NFRA ensures
Tijaeg < Tjmax Tather than Tjwg < Tjme for average response
time constraint SLA. In an optimal solution this more
restrictive constraint is unnecessary since at some servers
the average response time can violate the stipulated
response time requirement while making up for it at
some other servers. In order to quantify the effect of this
sub-optimal utilization selection of NFRA we compare
NFRA with two approaches: (1) greedy and (2) pseudo
optimal. Next we give a brief overview of the pseudo
optimal solution, which is applicable to all the SLA types
except the throughput constrained SLA for which NFRA
already finds the optimal solution. Let us look at the
pseudo optimal solution for average response time SLA,
which is equally applicable to stochastic maximum
response time SLA.

Since in optimal solution constraints are not imposed
conservatively on every server of a pool, pseudo optimal
solution treats every server in a pool as a different
resource and tries to find the optimal resource allocation
between every server and client pair, rather than for a
server pool and client pair like NFRA. Second, an optimal
solution does not need to set an upper bound on the
utilization of any server, as done in NFRA. In essence, in
an optimal solution any server can be allocated to any

client at any utilization as long as the SLA constraint is
met over all the servers. Therefore each individual server
client pair must sweep the whole range of utilization in
order to search for the optimal solution. In the pseudo
optimal solution we divide the whole range of utilization
(0, 1) into multiple levels. This discretization of utilization
level makes the solution pseudo optimal instead of truly
optimal. The following LP formulation models our
pseudo optimal solution.

M'“ZZZ P U)X,
Z:z:‘[l'k avg (U J'k)( jiH i Jlk/ﬂ ) <7V
Zzujlkﬂpk jik :ﬂ’jﬂvj & ijik SI,VI
ik

where, x;ji is the dec151or1 variable corresponding to client j
on some server i at utilization level k (Uji), denoting what
fraction of server i at utilization level k is allocated to
client j. Pjix denotes the power corresponding to the same
triplet (j, 7, k) at utilization Uji. The first constraint is the
average response time constraint which takes the
weighted average of the average response times Tjikay for
triplet (j, i, k) at utilization, Uji. Tjkayg is a function of Uji
(cf. eq. (4)). Tjikwg is weighted with respect to the fraction
client j’s requests that are served by server i at utilization
level k, Ujkx. The second constraint is the throughput
constraint for each client j and third constraint is capacity
constraint for each server i. We refer to this solution as
Pseudo-opt. Note that we can easily replace Tjitawg with Bjix
for stochastic maximum response time constraint and
update the objective function for profit maximization. In
the interest of space we omit the details of those
formulations.

Two serious concerns for implementing Pseudo-opt are
worth mentioning. 1) It treats each server in a pool
individually causing a huge explosion in the state space
that needs to be searched between all client-server pairs.
2) The utilization range (0, 1) is split into multiple levels
and hence the search space multiplies by the number of
levels. The net result of this explosion is that Pseudo-opt
even for our small hosting center configurations runs
approximately 75,000X slower than NFRA.

4.3 Throughput Constrained Optimization

The greedy approach implemented for throughput
constrained energy minimization sorts energy per request
values, ej, corresponding to client j and server pool i, in
non-decreasing order. From this sorted list it picks each
server pool and client pair (i, j), one at a time, and
allocates resources so as to meet the throughput
requirement.

Fig. 8 shows comparison between Greedy and NFRA.
Note that Greedy is not able to find a feasible solution
corresponding to config_B for Instance_1 and Instance_2
workloads. This means that even though we had enough
servers to be allocated to clients so as to satisfy the
throughput requirement, Greedy was unable to find a
mapping. When Greedy does find a feasible solution, the
energy consumption of NFRA is 3.9% lower than Greedy.
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Fig. 8 Throughput Constrained Energy Optimization.

We can intuitively explain why greedy solution, when
it works, is not as worse, as one would expect. Referring
to the per request energy characterization of Fig. 7, the
trend in per request energy across four different server
pools remains similar for all three workload types. Hence,
the choice of which server pool to use is not very different
between Greedy and NFRA. However, as the
heterogeneity of the server pools and workloads increases
Greedy would perform worse, as we will shortly
demonstrate. Second it is critical to note that NFRA
always finds a feasible solution whenever such a solution
exists. Hence, when resources are provisioned for near-
peak demand then NFRA will find a feasible solution
while Greedy will fail. When resources are scarce due
server downtimes or failures and/or maintenance, Greedy
may have to employ admission control even though
enough resources are available. Note that, due to
heterogeneous server clusters, there is no closed form
equation that dictates the capacity requirement for a
given set of clients and hence the existence of a feasible
solution is non-trivial to check for Greedy.

4.4 Average Response Time Constrained
Optimization

In this section we present the results for average response
time constrained energy optimization and compare it
with Greedy and Pseudo-opt approaches. Greedy works
similar to the one used for throughput constrained
optimization; once a pair (i, j) with the smallest ey is
picked, the decision regarding how many requests of
client j are assigned to server pool i is made using the
Uijimax (eq. (6)) that that satisfies the average response time
constraint.
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Fig. 9 Average Response Time Constrained Energy
Optimization.
Fig. 9 shows the comparison of our approach with
Greedy and Pseudo-opt. Here, Greedy always finds a
solution and is within 5% margin of NFRA with NFRA

being, on average, 3.3% better than Greedy. The reason
behind such a small difference in energy optimization
between Greedy and NFRA is, once again, the trend in
energy consumption as mentioned in previous section.
With respect to Pseudo-opt solution, NFRA results are
within 0.1% bound of Pseudo-opt. Hence our slightly
conservative resource allocation does not negatively
impact profit much. However, the difference in execution
time is dramatic. NFRA on average took about 0.004
seconds to complete resource allocation while Psuedo-opt
takes 300 seconds, a 75,000X slowdown.

4.5 Stochastic Maximum Response Time
Constrained Optimization

4.5.1 Energy Optimization

In this section we present the results for stochastic
maximum  response  time  constrained  energy
optimization. The Greedy approach implemented here is
similar to the Greedy approach for average response time
constrained energy optimization except that Uijmx is
derived using eq. (11) that satisfies stochastic maximum
response time constraint.
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Fig. 10 Stochastic Maximum Response Time Constrained
Energy Optimization.

Fig. 10 shows the results using response time
constraints specified in Table 1. As shown in the figure,
Greedy is about 6% worse than NFRA, if Greedy is able to
find a solution. Once again note that NFRA always finds
a feasible solution while Greedy fails in some instances.
Second, the reason why Greedy is only 6% worse than
NEFRA is due to similar trend in per request energy of the
workloads across four server pools as mentioned earlier.
Fig. 10 also shows the results of Pseudo-opt. As shown,
once again, NFRA results are within 0.1% bound of the
Pseudo-opt. Thus NFRA achieves results that are very
close to optimal at much lower execution time overhead.

4.5.2 Profit Maximization

For profit maximization, the greedy approach sorts (i, j)
pairs according to the per request profit in non-increasing
order, where profit is obtained by subtracting e;j values
from R;. Once a pair (i j) is picked it greedily picks
utilization value that, while satisfying response time
constraint dictated by Uijmx, maximizes per request profit,
i.e., Uiy, and accordingly assigns client j's requests to
server pool i. Fig. 11 shows the results for the profit
maximization, where the result of Greedy is normalized
to the result of NFRA. Here we set the edge splitting
cardinality, K=8.
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Fig. 11 Profit Optimization.

As shown in the figure, NFRA achieves, on average,
9.4% more profit than Greedy for Instance_3 workload
while Greedy fails to find any feasible solutions for
Instance_1 and Instance_2 workloads. Furthermore, Fig. 11
also shows the Pseudo-opt results normalized to NFRA
which is again within 0.1% bound.

The superiority of NFRA over Greedy may be
highlighted with more heterogeneous setups when
different client requests exhibit stark execution time
differences on different server pools. To demonstrate this
aspect we chose five different hosting center setups with
two server pools consisting of HP_A and HP_B servers.
The five hosting center combinations are (# of HP_A
servers, # of HP_B servers): a) (30, 10), b) (25, 15), c) (20,
20), d) (15, 25) e) (10, 30). We chose only two clients, E-
commerce and Support, due to their stark difference in T
values across HP_A and HP_B servers. Using the same
setup we also demonstrate the importance of accounting
for non energy proportionality. Here we modified our
profit maximizing solution such that it does not scale per
request energy, ey, for client j on server pool i. Hence the
profit function @j; of eq. (20) only accounts for the
utilization dependent price, ¥, while keeping the energy
cost constant to ej, independent of utilization. Since the
energy cost is constant we will not have a concave
downward function (cf. Fig. 5). Hence in this new, energy
proportionality oblivious, profit maximizing solution we
must consider the full range of server utilization, i.e., (0,
1). We divided this whole range for each server pool and
client pair in K=64 levels.
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Fig. 12 Impact of Large Scale Heterogeneity.

Fig. 12 shows the results with NFRA performing 38.8,
27.3,17.5, and 12.9% better than Greedy for configuration
a, b, ¢, and d respectively. For configuration e Greedy
does not find a solution. With respect to non energy
proportionality oblivious solution, NFRA performs 17.4,
16.9, 14.4, 10.7 and 8.2% better for configuration a, b, ¢, d

and e respectively. The results show that in the presence
of large number of energy inefficient servers 1) NFRA
outperforms Greedy and by a much larger margin 2)
accounting for non energy proportionality becomes
important.

As mentioned earlier, the profit maximization problem
that we formulated in section 3.5.3.2 is an approximation.
Since we split the range [Uijiopt, Uijmax] into K levels, there is
a quantization error. As we increase the value of K this
error reduces and results improve. In order to understand
the impact of K on approximation result we obtain the
profit maximization results using different values of K for
config_A. Fig. 13 shows the result with profit normalized
to K=1. Across all three workloads, beyond K=4 the
improvement in the solution is below 0.1%. However, as
K increases, NFRA execution time increases super-
linearly as shown on the secondary Y-axis, thereby
increasing the overhead. Note that the improvement over
different K values is also a function of server pool and
client characterization. Hence the data shown in Fig. 13
may not hold across different server pool and/or client
configurations, but the proposed iterative edge splitting
approach will be able to quickly converge to a good
solution given appropriate threshold bounds on
incremental profit.
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Fig. 13 Impact of Edge Splitting Cardinality on
Approximation.

To understand how NFRA runtime scales across much
larger setups we solved profit maximizing NFRA across
four different setups, characterized by parameters (¥ of
pools, # of clients, # of servers across all pools) given as
follows: (12, 24, 600), (24, 40, 1200), (36, 56, 1800) and (48,
72, 2400). These setups were generated by scaling
config_A and Instance_1 workloads. In order to scale up
the number of server pools we took the existing baseline
config_A setup and generated new server pools by scaling
up each of the server pool in terms of their frequency and
power values. Furthermore Instance_1 workload was
similarly scaled up to generate Tj and ejj values for each of
the new server pool by applying appropriate scaling
factors. The details of these scaling factors are omitted
here in the interest of space. However for the purpose of
runtime scaling what matters is the number variables
each new hosting center setup introduces rather than the
precise values of Tj and ej. In Fig. 14 we show how
runtime scales on our Xeon dual core 1.86GHz, 2GB RAM
machine. As shown in the figure, even with larger setup,
run time for K=4 for the largest setup is about 2 seconds
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while the profit is within 0.1% compared to K=16.
However, with K=16 run time increases substantially (3X).
—~+Edge splitting cardinality K 4 .
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Fig. 14 NFRA Runtime Scaling.

4.6 Sensitivity Analysis

In this section we present the impact of variation, in
various parameters, on the optimality of the solution and
on the SLA constraints. For this purpose we perform
sensitivity analysis, for profit maximizing NFRA, by
introducing percentage variation in the arrival rates (A;) of
all the clients. We introduce variation homogenously
across all the clients for simplicity since otherwise
exploration space will explode. Our sensitivity analysis
was carried out for profit maximizing NFRA for
Instance_3 under config_A. First we obtain the optimal
resource allocation, opt, without considering any variation
with corresponding optimal profit denoted as profitop:.
Then we apply different amounts of variation in arrival
rate as show on X-axis in Fig. 15.

Due to this variation, fraction of the requests, denote by
Brew, that will violate response time will be different from
the fraction resulting from the optimal solution which has
ignored variation. The results on primary Y-axis of Fig. 15
show that how far Buew is from the g stipulated in SLA. We
denote this distance by percentage difference Ap.
Furthermore we obtain new optimal resource allocation,
optwew, considering new arrival rates resulting from
variation with corresponding optimal profit denoted as
profituewopr. Note that the achieved profit by opt, as a result
of variation, denoted by profit’o:, will be different from
profite:. The secondary Y-axis of Fig. 15 show how far
profit'opt is from profituewopr. Obviously, if the average
arrival rate is less than the originally estimated A; value,
AB is negative, i.e., we satisfy more requests than
stipulated by SLA on time. Furthermore in the worst case
profit'op is 10.6% lower than profitiewoptr with average
being 5.1%. As the average arrival rate increases,
particularly beyond 4% variation, Af goes above zero for
many clients, leading to SLA violation. For example, for
client 1 at 6% variation we are violating (3=0.05 (cf. Table
1) by 21%; probabilistically, 6.05% of the requests, instead
of 5%, will violate the Tjmw. This implies that either we
must make allowance for the expected variation during
resource allocation for a given time epoch or based on
dynamic monitoring of AS solve a new instance of NFRA
instead of waiting till the end of the time epoch. Here
time epoch refers to time interval length at which
resource allocation decision are made. We carried out
similar analysis for variation in pij and ej obtaining similar
results which are not presented here in the interest of

space. Note that solving the new instance of NFRA may
result in a resource allocation that demands client
migration from previously allocated servers to new
servers. Such migration if done frequently is undesirable.
We can address this issue by comparing the resource
allocation from the previous epoch with the new instance
of NFRA. If the new solution needs substantial migration
for a given client whose costs are prohibitive then we
connect the client only to servers previously unallocated
to this client and solve a new instance of NFRA with only
the increment in client’s request arrival rate.
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Fig. 15 Arrival Rate Variation.

If variations in the arrival rate are frequent and have
large amplitude then we must solve a new instance of
NFRA in order to stay close to the optimal solution,
which may require turning ON or OFF more servers.
Here we focus on increase in the arrival rates, which may
require turning ON some new servers, either by 1)
Reboot: unused servers are originally turned off and
hence require reboot if allocated or 2) Wakeup: unused
servers are put to system sleep state S3 and hence require
wakeup when allocated. Sleeping servers still consume
power, but much less than ON server, such as for DRAM
refresh; OFF servers consume zero power for all practical
purposes. To understand the impact of the frequency and
amplitude of variation, in Aj on profit and penalties
associated with turning servers ON, we carry out the
following experiment: In order to capture frequency of
variation we vary the length of the time epoch from 10
minutes to 60 minutes in the increments of 10 minutes,
shown on X-axis in Fig. 16. At each such time epoch we
apply 10, 15 and 20% increase in the arrival rates to
capture the amplitude of variation and solve NFRA.

-
(=]

| —+—10% Reboot |
—a- 10% Wakeup |

| —— 15% Reboot |

| == 15% Wakeup |
—— 20% Reboot

1 —e- 20% Wakeup |

@
(=]

wm
o

£
(=]

% D-tstance fi'bm tﬁe 'Id'eai bpnmal
w
o

o

3 8
8 .
8

10 60

20_ 30 {
Time epoch (in minutes)

Fig. 16 Impact of Reboot/Wakeup Latency and Power.

The resource reallocation may require few more servers
to be turned ON. The latencies associated with rebooting
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the servers and wakeup from S3 are conservatively set to
90 [3] and 15 [23] seconds, respectively. During this
reboot/wakeup latency, if the increase in arrival rate is
such that the previously allocated resources are under
provisioned then servers may run at 100% utilization.
Requests allocated to such servers will be queued until
served but will violate the response time. Hence we
conservatively assume that we will pay penalty on all
such requests. Once the servers are UP, either after reboot
or wakeup, we start operating at the optimal point. We
consider S3 state power to be 1/20th of the idle power
[27]. The results in Fig. 16 show, for different time epochs
lengths, how far the achieved profit will be from the
theoretical optimum. The theoretical optimum here
assumes that servers are turned ON instantly.

Note that at smaller time epoch lengths, e.g., 10
minutes, the latency associated with reboot is very high
compared to wakeup from S3, hence we incur high losses
under Reboot at high variations, ie., 15% and 20%.
Therefore under these circumstances Wakeup is better, as
shown in Fig. 16. Although at low variation, 10%, Reboot
works better since losses incurred are small during the
latency period and for the rest of the time epoch unused
servers consume no power. At larger epoch lengths
Reboot works better since servers keep consuming power
for the rest of the time epoch under S3 state for Wakeup.
Hence if frequent and high variations are observed,
Wakeup works better and Reboot works better otherwise.

5. RELATED WORK

Due to increasing energy and cooling cost of the
hosting centers many of the previous works have focused
on energy management in hosting centers. Chase et al. in
[1] proposed an economy based approach for energy
optimization that monitors the dynamic variation in the
workload and accordingly assigns servers so as to
minimize energy while meeting SLA. In [2] authors
proposed various independent and coordinated workload
dependent DVES techniques to minimize energy in server
clusters. In [3] authors proposed queuing and control
theory based performance constrained energy
management framework for homogenous server clusters.
Rusu, et al. in [4] proposed a QoS aware technique that
dynamically reconfigures a set of heterogeneous clusters
to reduce energy during the reduced load period. In [5]
authors proposed power aware request distribution
technique taking into account the startup and shutdown
delay of the servers. Authors in [6] proposed an approach
that exploits long-time-scale variation in the workload in
order to reduce the resource requirement for energy
improvement. In [7] Heath, et al. proposed a
heterogeneous server cluster design for throughput
constrained energy optimization. In a more recent work,
Raghavendra et al. in [8] proposed a coordinated energy
management approach by integrating  various
independent policies working at different levels of the
hierarchy in the datacenter. Their framework attempts to
synchronize decisions made at various levels. Authors in
[9] proposed a power minimizing datacenter architecture
by employing comprehensive online monitoring, live

virtual machine (VM) migration and VM placement
optimization. In [10] Govindan et al. proposed power
management approach by under provisioning the
resources and overbooking the power needs of the hosted
workloads and distributing the power flexibly among
hosted workloads. In another set of research ([15], [16],
[17]) authors proposed energy management techniques
for disk power management in servers with multispeed
disks, dynamic speed control and storage cache
management.

Along with the energy management in the hosting
center profit optimization has also been a concern that has
been addressed by many previous works. In [13] authors
proposed to profile applications in terms of their resource
needs and then employ resource overbooking to
maximize the generated revenue while providing
performance guarantees. Bennani [14] et al. proposed an
analytical queuing model and combinatorial search based
approach to resource allocation that optimizes some
utility function, e.g throughput or response time etc. In
[11] authors proposed an approach to maximize the total
profit considering the prices and penalty paid by the
clients being hosted on the hosting center, subject to
SLAs. They used the fixed point iteration method to
converge to optimal solution by solving separable
concave resource allocation problems assuming an
increasing, concave and differentiable price function. In
another profit maximizing approach, Zhang et al. [12]
proposed tabu search based heuristics that tries to
maximize the total profit while considering the
operational cost of the servers.

6. CONCLUSIONS

In this paper we proposed a generalized network flow
based resource allocation framework called NFRA. We
showed how non energy proportional systems affect the
profits made by quantifying non energy proportionality
of the systems with Energy Increase Factor (EIF). Using
the proposed NFRA framework then, we solve resource
allocation problems for throughput constraint, average
response time constraint and stochastic maximum
response time constraint with the objectives of energy
minimization and profit maximization. We show that,
while, given sufficient resources, heuristic based
approaches may fail to find a feasible solution; NFRA
finds a feasible solution. Furthermore using NFRA for
profit maximization we show that our approach quickly
converges towards optimal and finds a solution that is
within 1% bound of the optimal.
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