
Service Level Agreement-Based Joint Application Environment Assignment and
Resource Allocation in Cloud Computing Systems

Yanzhi Wang, Shuang Chen and Massoud Pedram
Department of Electrical Engineering

University of Southern California
Los Angeles, USA

{yanzhiwa, shuangc, pedram}@usc.edu

Abstract—Cloud computing have attracted a lot of attention
recently due to increasing demand for high performance
computing and storage. Resource allocation is one of the most
important challenges in the cloud computing system especially
when the clients have some Service Level Agreements (SLAs)
and the total profit depends on how the system can meet these
SLAs. Moreover, a data center typically hosts and manages a
suite of application environments and a fixed number of
servers that are allocated to these application environments in
a way that maximizes a certain utility function. In this paper,
we consider the problem of SLA-based joint optimization of
application environment assignment, request dispatching from
the clients to the servers, as well as resource allocation in a
data center comprised of heterogeneous servers. The objective
is to maximize the total profit, which is the total price gained
from serving the clients subtracted by the operation cost of the
data center. The total price depends on the average service
request response time for each client as defined in their utility
functions, while the operating cost is related to the total energy
consumption. We propose a near-optimal solution of the joint
optimization problem based on the Hungarian algorithm for
the assignment problem, as well as convex optimization
techniques, in a way that is similar to the constructive
partitioning algorithm in VLSI computer-aided design (CAD).
Experimental results demonstrate that the proposed near-
optimal joint application environment assignment and
resource allocation algorithm outperforms baseline algorithms
by up to 65.7%.

Keywords-cloud computing; application environment;
resource allocation; assignment problem

I. INTRODUCTION
Cloud computing has been envisioned as the next-

generation computing paradigm for its advantages in on-
demand service, ubiquitous network access, location
independent resource pooling, and transference of risk [1].
Cloud computing shifts the computation and storage
resources from the network edges to a “Cloud” from which
businesses and users are able to access applications from
anywhere in the world on demand [2][3][4]. In cloud
computing, the capabilities of business applications are
exposed as sophisticated services that can be accessed over a
network. Cloud service providers are incentivized by the
profits by charging the clients for accessing these services.

Clients are attracted by the opportunity for reducing or
eliminating the costs associated with “in-house” provision of
these services. It is essential that the clients have guarantees
from service providers on service delivery. Typically, these
are provided through Service Level Agreements (SLAs)
brokered between the providers and consumers. The SLAs
include computing power, storage space, network bandwidth,
availability and security, etc.

The underlying infrastructure of cloud computing
consists of data centers and clusters of servers that are
monitored and maintained by the cloud service providers [6].
Service providers often end up over-provisioning their
resources in these servers in order to meet the clients’ SLAs
[5]. Such over-provisioning may increase the cost incurred
on the servers in terms of both the electrical energy cost and
the carbon emission. Therefore, optimal provisioning or
allocation of the resources is imperative in order to reduce
the cost incurred on the servers as well as the environmental
impact while satisfying the clients’ SLAs. The problem of
optimal resource allocation in the cloud computing
framework for serving the service requests of each client is
therefore crucial and has been investigated in [7][8][9][10].
The more general problem of resource allocation and
management in distributed computing system has been an
active research topic in the recent ten years. There is a
number of papers discussing the resource allocation problem
in grid computing systems [11][12], in the framework of
electronic commerce [13], in autonomic computing systems
[14][15], in clusters of servers [16], and in hosting centers
[17].

A data center typically hosts and manages a suite of
complex Application Environments with diverse
requirements and dynamic characteristics. For example,
some Web applications experience highly bursty traffic
whose workload intensity varies dramatically during
different time of day, or day of week. The data center also
has a fixed number of servers that are (dynamically)
allocated to these various application environments in a way
that maximizes a certain utility function, as discussed in [20].
References [18][19][20][21] introduce the application
environment assignment problem, i.e., determining which
subset of the available servers should be allocated to run

*This research is sponsored in part by the Software and Hardware
Foundations program of the NSF’s Directorate for Computer & Information
Science & Engineering.

2013 IEEE Green Technologies Conference

978-0-7695-4966-8/13 $26.00 © 2013 IEEE

DOI 10.1109/GreenTech.2013.33

167

2013 IEEE Green Technologies Conference

978-0-7695-4966-8/13 $26.00 © 2013 IEEE

DOI 10.1109/GreenTech.2013.33

167

each application environment, where each server can run at
most one application environment. However, they suffer
from either the scalability problem, or the lack of exploiting
the opportunity of joint application environment assignment
and resource allocation to maximize the total profit. The
latter opportunity is especially important since the results of
application environment assignment and resource allocation
affect each other in an interactive manner.

In this paper, we consider the problem of SLA-based
joint application environment assignment and resource
allocation optimization in a data center comprised of
heterogeneous servers. Multiple clients exist in this
framework, each generating service requests in a different
rate. A client runs one or multiple types of application
software, which require processing, data storage, and
communication resources in the cloud computing system.
Each client in this system has a pre-defined utility function
based on its response time requirements. The data center
consists of multiple potentially heterogeneous servers. The
total profit in this cloud computing system is the total price
gained from serving the clients subtracted by the cost of
operating the turned on servers in the system, where the
operating cost of turned on servers is proportional to their
energy consumptions.

Different from the prior work, we propose a joint
optimization framework considering the optimal application
environment assignment, request dispatching from the clients
to the servers, as well as the optimal resource allocation in
the servers. We propose a near-optimal solution of this joint
optimization problem, which is motivated by the VLSI
computer-aided design (CAD) algorithm for constructive
partitioning (partitioning by clustering) of circuit netlists
[28][29]. We define and compute an affinity value for each
application environment-server pair based on the resource
allocation optimization results, where a higher affinity value
indicates that it is more preferable to assign the
corresponding application environment to the server. We
allocate a subset of servers based on the affinity values, one
for each application environment. We recalculate the affinity
values and proceed with this assignment procedure. The
near-optimal solution is based on the Hungarian algorithm
for the assignment problem [33], as well as convex
optimization techniques [31][32]. Experimental results
demonstrate that the proposed near-optimal joint application
environment assignment and resource allocation algorithm
outperforms baseline algorithms by up to 65.7%.

The rest of this paper is organized as follows. The system
model for joint application environment assignment and
resource allocation in the cloud computing system is
introduced in Section II. The optimization problem
formulation is provided in Section III. The proposed near-
optimal algorithm is provided in Section IV. Experimental
results and conclusion are presented in Section V and
Section VI, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION
Figure 1 shows the structure of the target cloud

computing resource allocation system with a set of � clients,
a data center, as well as a central resource management node.
The data center hosts � application environments and has �
potentially heterogeneous servers that should be allocated to
run the application environments. The central manager has
information about the data center as well as the clients.

,1 ,1,3λ G D
i i ip p

,1 ,1,5λ G D
i i ip p

,2 ,2,1λ G D
i i ip p

,2 ,2,2λ G D
i i ip p

,2 ,2,6λ G D
i i ip p

,3 ,3,4λ G D
i i ip p

,3 ,3,7λ G D
i i ip p

Figure 1. Conceptual structure of the application environment assignment
and resource allocation system in cloud computing, with � � � and � � �.

Each client in the system is identified by a unique ID,

represented by index i. Each application environment in the
data center is represented by index j. Similarly, each server
in the data center is captured by index k. Each server can be
allocated by the central manager to run at most one
application environment. An application environment can be
assigned to multiple servers. Let �	
�� denote the
application environment assigned to the k-th server in the
data center. Let

�� denote the set of servers allocated to
run the j-th application environment.

A client runs one or more types of applications and
generates service requests to be served in the data center. Let ���
�� denote the set of applications running in the i-th
client. In order to find the analytical form of the response
time, the service requests generated from each i-th client are
assumed to follow a Poisson process with an average
generating rate of �� (predicted based on the behavior of the
client.) We assume that a portion ����� of these service
requests is generated from the j-th application, where the
superscript � stands for ‘Generating’. We have ����� � � if
the j-th application is not running in the i-th client, i.e., � � ���
��. Then according to the properties of the Poisson
process, the service requests that are generated from the j-th
application of the i-th client follow a Poisson process with an
average rate of ���� � ����� � �� [24].

Service requests generated by a single application in a
single client can be assigned to multiple servers in the data

168168

center, as long as these servers are allocated to run such
application environment. The request dispatcher assigns a
request generated from the j-th application of the i-th client
to the k-th server in the data center with probability ������� ,
where the superscript � stands for ‘Dispatching’. Please note
that we have ������� � � as long as � � �	
�� . These �������
probability values are the optimization variables in the
resource allocation optimization framework. According to
the properties of the Poisson distribution [24], service
requests that are generated from the j-th application of the i-
th client and dispatched to the k-th server in the data center
follow a Poisson process with an average rate of ���� � ������� .
As long as a service request is dispatched to a server, the
server creates a dedicated virtual machine (VM) for that
service request, loads the application executable and starts
execution [27].

To model the multi-class queues in the cloud computing
system, the Generalized Processor Sharing model [25][26] is
used. It has been shown that the GPS can be implemented by
weighted fair queueing if the service times of packets are not
too large. Let ���� denote the portion of computation
resources of the k-th server that is allocated for the i-th client.

All multi-class single server queues can be replaced by
single class single server queues using the GPS model. To
model the response time of the service requests in the cloud
computing system, by using the well-known formula in
M/M/1 queues [30], the average response time of the service
requests generated from the i-th client and dispatched to the
k-th server (i.e., the application type � � �	
��) is given by:

���� ���!"
����� # ����$

� % &'!"
���� � ���� (���!"
����� � ���!"
�� �)*+���!"
����� , �
��+++ ++++++++++++++++++++++-./012)30

(1)

for ���!"
�� , � (i.e., �	
�� 4 ���
��). In Eqn. (1), '!"
����
denotes the average processing speed of the k-th server in
processing service requests from application type �	
�� ,
when all the resources in the server has been allocated. The
overall average response time of client i can be calculated as:

�� � 5 ���!"
��� � ���!"
�����
!"
��4���
�� � ���� ���!"
����� # ����$

(2)

The power consumption of each k-th server if it is turned ON
is modeled as a constant term plus another component
linearly related to the utilization of the server in the
processing domain, given by:

6��789:; < 6��=�9 � 5����
>

�?@ (3)

The objective of the joint application environment
assignment and resource management problem is to

maximize the total profit of the data center from serving the
clients. In this system, decision making intervals can be
defined based on the behavior of the dynamic parameters in
the system. This is because the solution found by the
presented algorithm is acceptable only when the parameters
used to find the solution are approximately valid. Although
some small changes in the parameters can be effectively
tracked and responded to by proper reactions of the central
resource manager in the data center, large changes cannot be
handled in this way. In the remainder of this paper, the joint
application environment assignment and resource allocation
problem at each decision epoch is presented and a solution is
provided, but we do not discuss the estimation, prediction,
and dynamic changes in the system because these issues are
out of the scope of this paper.

III. OPTIMIZATION PROBLEM FOMULATION
Let A�
�� denote the non-increasing utility function of

the i-th client with the average service request response time
equal to �. In the rest of this paper, we use a linear-form
decreasing utility function in the optimization problem, i.e., A�
�� � B� (C� D �, similar to the utility function exploited
in [7][8]. Let E� denote the pseudo-Boolean integer to
represent if the k-th server is turned ON (E� � &) or OFF
(E� � �). �	
�� and ���� can be arbitrary value if E� � �,
i.e., we are only interested in the �	
�� and ���� values for E� � &. In this optimization problem, E� , �	
��, ���!"
����� ,
and ���� values are the optimization variables. The other
parameters are either constants or functions of these
optimization variables.

The overall joint optimization problem of application
environment assignment, request dispatching, and resource
allocation for the data center is formulated as a profit
maximization problem as below:

Find the optimal E�’s, �	
��’s, ���!"
����� ’s, and ����’s.
Maximize:

5�� �
B� (C� D ���>
�?@

(6F�GH � 5E� � I6��789:; < 6��=�9 �5����
>

�?@ JK
�?@

(4)

Subject to: E� 4 L��&M� *-1 N� 4 L&�O� P � �M� (5) � Q ���!"
����� Q &�+++*-1+N�� ��+ (6) � Q ���� Q &�+++*-1+N�� ��+ (7) ���!"
����� � ���!"
�� Q '!"
���� � �����+++*-1 N�� �� (8)

5 ������� � &�R!"
��?� �+++*-1+N�� ��+ (9)

169169

5���� Q &>
�?@ �+++*-1+N� 4 L&�O� P � �M�+ (10)

E� S 5����
>

�?@ �+++*-1+N��+ (11)

where 6F�GH is the unit energy price at this decision epoch.
In the objective function (4), the first term is the total

price gained from serving all the service requests, and the
second term is the total energy cost for operating the data
center. Constraints (5) - (7) specify the domains of the
optimization variables. Constraint (8) shows a lower limit on
the resource allocation in each server. Constraint (9) ensures
that all requests generated by a client are served. Constraint
(10) limits the total amount of allocated resource in each
server. Constraint (11) determines the set of turned ON
servers based on the allocated resources.

The overall joint application environment assignment and
resource allocation problem is a mixed integer nonlinear
programming problem. The problem cannot be solved using
the conventional convex optimization methods [31][32]
since the objective function (4) is neither convex nor
concave even if the optimal values of the integer variables E�’s and �	
��’s are given in prior, i.e., the set of servers
that are turned ON and the application environment
assignment results are given in prior.

IV. OPTIMIZATION METHODS
The joint application environment assignment and

resource allocation problem presented in the previous section
is a hard problem due to the non-convexity of the objective
function as well as the existence of integer variables E�’s and �	
�� ’s. The simple problem solvers cannot solve this
problem except in the case of very small input size by
running exhaustive search or by using stochastic
optimization methods such as the Simulated Annealing or
Genetic Algorithm. In this section, a near-optimal solution is
presented for this problem.

The proposed near-optimal solution is motivated by the
algorithm of constructive partitioning, i.e., partitioning by
clustering, of circuit netlists in VLSI CAD [28][29]. More
specifically, the near-optimal solution consists of two steps.
In the first step, we perform effective application
environment assignment and find the near-optimal integer
values E� and �	
�� . We define and compute an affinity
value �TT
�� �� for each application j and server k, where a
higher affinity value indicates that it is more preferable to
assign the corresponding j-th application environment to the
k-th server. We allocate a subset of � servers based on the
affinity values, one for each application environment. We
recalculate these affinity values for the remaining servers and
proceed with this assignment procedure. The first step is
based on the Hungarian algorithm for the assignment

problem [33], as well as convex optimization techniques
[31][32]. In the second step, we perform effective service
request dispatching and resource allocation, i.e., finding the
near-optimal ���!"
����� and ���� values, based on the results
of application environment assignment. The second step is
based on iterative optimization and convex programming
techniques. We will elaborate the details of the near-optimal
algorithm in the following three subsections.

A. Calculating the Affinity Values
We introduce in the following the proposed method to

calculate the affinity values �TT
�� ��’s. A higher affinity
value �TT
�� �� indicates that it is more preferable to assign
the j-th application environment to the k-th server. We
formally present the calculation procedure of the affinity
values as follows.

Client i

Client 1

Client N

1,λ j

,λi j

,λN j

1, 1, ,λ D
j j kp

, , ,λ D
i j i j kp

, , ,λ D
N j N j kp

1,φ k

,φi k

,φN k

Resource Allocation

Server k

Figure 2. Conceptual structure illustrating the calculation of affinity value �TT
�� ��.

In order to calculate the �TT
�� �� value, we only

consider dispatching service requests of the j-th application
environment to the k-th server. As illustrated in Figure 2, the
service requests of the j-th application environment are
generated from the 1st, 2nd, …., �-th clients with average rate
of �@�� , �U�� , … , and �>�� , respectively. We dispatch a
portion ������� of such service requests from each i-th client to
the k-th server. We allocate a portion ���� of resources in the
k-th server to serve the requests generated from the i-th
client. The objective is to maximize the ratio of the total
price gained by the k-th server from serving the requests to
the energy cost, which is given by:

V ���� D ������� D WB� (C� D ���� ������� # ����$X�R�4���
��6F�GH � 6��789:; < 6��=�9 � V �����R�4���
�� $ (12)

170170

The optimization variables are ������� ’s and ���� ’s. The
constraints are given as follows:

� Q ������� Q &�+++*-1+N��+ (13) � Q ���� Q &�+++*-1+N��+ (14) ������� � ���� Q '��� � �����+++*-1+N��+ (15)

5 �����R�4���
�� Q &�+ (16)

We name this optimization problem the Maximum Ratio
Optimization (MRO) problem. Suppose that the MRO
problem has been optimally solved. Let �������Y ’s and ����Y ’s
denote the optimal values of the optimization variables in the
MRO problem. Then the affinity value �TT
�� �� is defined
as the corresponding total profit, which is given by:

�TT
�� �� � 5 �����R�4���
��D �������Y WB� (C����� �������Y # ����Y $X

(6F�GH � Z6��789:; < 6��=�9 � 5 ����Y�R�4���
�� [
(17)

We will provide the solution of the MRO problem as
follows.

The MRO problem is a non-convex optimization
problem with continuous optimization variables, because the
objective function (12) is neither convex nor concave with
respect to the optimization variables ������� ’s and ���� ’s. It
cannot be solved optimally using conventional convex
optimization techniques. We propose an iterative near-
optimal solution of the MRO problem and calculation of �TT
�� �� as shown in Algorithm 1. In each iteration, the
near-optimal solution consists of an optimal resource
allocation phase and an optimal request dispatching phase
as follows.

The Optimal Resource Allocation Phase: In this phase,
the controller finds the optimal ���� values in order to
maximize the objective function (12) when the ������� values
are given. The constraints are (14), (15), and (16). This
optimization problem is a quasi-convex optimization
problem [31] since (i) the nominator of the objective
function (12) to maximize is a concave function of ���� ’s
when the ������� values are given, whereas the denominator of
(12) is a linear function of ����’s; (ii) the constraints (14),
(15), and (16) are linear inequality constraints. Such quasi-
convex optimization problem can be transformed into a set
of standard convex optimization problem and solved
optimally within polynomial time complexity [31].

The Optimal Request Dispatching Phase: In this phase,
the controller finds the optimal ������� values so as to
maximize the objective function (12) when the ���� values

are given. The constraints are (13) and (15). This problem is
also a convex optimization problem since (i) the objective
function (12) is a concave function of ������� ’s when the ����
values are given, and (ii) the constraints (13) and (15) are
linear inequality constraints. Therefore, it could be solved
optimally with polynomial time complexity using standard
convex optimization techniques [31][32].

Algorithm 1: Near-Optimal Solution of the MRO Problem and
Calculating the affinity value �TT
�� ��.

Initialize the ������� values.

Do the following procedure iteratively:
Optimal resource allocation: Find the optimal ���� values that
maximize the objective function (12) based on the derived ������� values, using quasi-convex optimization methods.

Optimal request dispatching: Find the optimal ������� values that
maximize the objective function (12) based on the derived ����
values, using convex optimization methods.

Until the solution converges.

Calculate the �TT
�� �� value using (17) based on the near-optimal
solution of the MRO problem.

B. Optimization of Application Environment Assignment
After we have calculated the �TT
�� �� values, we

allocate a subset of � servers to execute the application
environments, one for each application environment.
Essentially, we find a map T
�� from each application
environment � to a server index, such that the following
summation of affinity values is maximized:

5�TT
�� T
���\
�?@ + (18)

This is the well-known assignment problem with unequal
numbers of “agents” and “tasks” [33], since the number of
servers is larger than the number of application environments
(i.e., �] �) in this case. We add dummy nodes to the set of � application environment to make the total number of
elements the same as the total number of servers, i.e., � .
Then we use standard solution of the assignment problem
such as the Hungarian method to optimally solve this
problem with polynomial time complexity [33].

After the first round, only � servers have been allocated
to run the application environments. We update the affinity
values for the application environment-server pairs of the � (� unallocated servers, based on the remaining service
requests (without dispatched to the servers) that are
generated from each j-th application environment. We again
allocate another � servers using the Hungarian algorithm
based on the updated affinity values. We proceed until there
are no remaining service requests from any application

171171

environment. In this way, we obtain the near-optimal
application environment assignment results and the set of
turned ON servers, i.e., the �	
�� and E� values. A brief
summary of the proposed near-optimal solution for
application environment assignment is provided in
Algorithm 2. Implementation details are omitted due to space
limitation.

Algorithm 2: Near-Optimal Solution for Application
Environment Assignment.

While there are remaining service requests without dispatched to
the servers:

Calculate the �TT
�� �� values for the unallocated servers.
Allocate � servers to run the application environments to
maximize the total affinity value, using the Hungarian
algorithm.
Set the �	
�� values of the � servers, and set their E� values
to 1 (turned ON.)
Dispatch the corresponding portions of service requests from
the application environments to the servers, and calculate the
remaining amounts of service requests of each application
environment.

End.

C. Optimization of Request Dispatching and Resource
Allocation
In the last phase of the overall optimization algorithm,

near-optimal values of the integer variables E� and �	
��
are given from the prior application environment assignment
procedure. The objective is to perform near-optimal service
request dispatching as well as resource allocation, i.e.,
finding the near-optimal ���!"
����� and ���� values, so as to
maximize the objective function (4). The constraints are (6) –
(10). We name this profit maximization problem the
Resource Allocation and Request Dispatching (RARD)
optimization problem. The optimization variables of the
RARD problem are the ���!"
����� and ���� values, which are
all continuous variables.

The RARD problem cannot be solved using conventional
convex optimization methods since the objective function (4)
is still neither convex nor concave even when the integer
variable values E� ’s and �	
�� ’s are given in prior. We
propose an iterative near-optimal solution of this
optimization problem as shown in Algorithm 3. In each
iteration, Algorithm 3 has an optimal resource allocation
phase as well as an optimal request dispatching phase as
follows:

The Optimal Resource Allocation Phase: In this phase,
the controller finds the optimal ���� values in order to
maximize the objective function (4) when the ���!"
�����
values are given. The constraints are (7), (8), and (10). This
problem is a convex optimization problem since the

objective function (4) is a concave function of ����’s when
the ���!"
����� values are given, and constraints (7), (8), and
(10) are linear inequality constraints. It can be solved
optimally within polynomial time complexity using standard
convex optimization techniques [31][32].

The Optimal Request Dispatching Phase: In this phase,
the controller finds the optimal ���!"
����� values so as to
maximize the objective function (4) when the ���� values are
given. The constraints are (6), (8), and (9). This problem is
also a convex optimization problem since the objective
function (4) is a concave function of ���!"
����� ’s when the ���� values are given, and therefore, it could be solved
optimally with polynomial time complexity using standard
convex optimization techniques [31][32].

Algorithm 3: Near-Optimal Solution of the RARD Problem.

Initialize the ���!"
����� values.

Do the following procedure iteratively:
Optimal resource allocation: Find the optimal ���� values that
maximize the objective function (4) based on the derived ���!"
����� values.

Optimal request dispatching: Find the optimal ���!"
����� values
that maximize the objective function (4) based on the derived ���� values.

Until the solution converges.

V. EXPERIMENTAL RESULTS
In this section, we implement the joint application

assignment and resource allocation optimization framework
and compare the proposed near-optimal algorithm with
baseline resource allocation algorithms.

We consider a data center of 20 heterogeneous servers
(we will change this number later in the experiments.) We
consider 4 clients generating service requests from 3 types of
application environments in the cloud computing system. We
use normalized amounts of most of the parameters in the
cloud computing system instead of their real values. The
average service request generating rate ���� from each j-th
application of each i-th client is a uniformly distributed
random variable between 1 and 4. The maximum average
processing speed of each k-th server for processing service
requests from application type j, denoted by '��� , is a
uniformly distributed random variable between 2 and 20. For
the power consumption in each k-th server, the 6��789:; term
is a uniformly distributed random variable between 1 and 5,
whereas the 6��=�9 term is a uniformly distributed random
variable between 5 and 15. For the utility functions, each C�
value is assumed to be a uniformly distributed random
variable between 2 and 3, and the B� values are assumed to
be equal to 7. The unit energy price 6F�GH is initialized to be

172172

1. We will change the 6F�GH parameter later in the
experiments.

We compare the total profit of the cloud computing
system achieved by the proposed near-optimal algorithm
with that achieved by the baseline algorithm. In the baseline
algorithm, the application environments are randomly
assigned to the servers in the cloud computing system. The
baseline algorithm performs near-optimal request
dispatching and resource allocation using the iterative
algorithm described in Section IV.C.

In the first experiment, we change the unit energy price 6F�GH from 0.4 to 1.6 and compare the total profit achieved
by the proposed algorithm and the baseline algorithm. Figure
3 illustrates the normalized total profit versus the unit energy
price of the proposed near-optimal algorithm and the
baseline algorithm. We can observe from Figure 3 that the
proposed near-optimal algorithm consistently outperforms
the baseline algorithm. Moreover, it can be observed that the
proposed near-optimal algorithm achieves higher
improvement compared with the baseline algorithm when the
unit energy price is higher. For example, when the unit
energy price is 1.0, the total profit obtained by the proposed
algorithm is 37.2% higher than the baseline algorithm. When
the unit energy price is 1.6, the total profit obtained by the
proposed algorithm is 65.7% higher than the baseline
algorithm.

Figure 3. The normalized total profit versus the unit energy price of the

proposed near-optimal algorithm and the baseline algorithm.

In the second experiment, we change the number of

servers in the cloud computing system from 15 to 30, and
compare the total profit achieved by the proposed algorithm
and the baseline algorithm. In this experiment, we fix the
unit energy price 6F�GH to be 1. Figure 4 illustrates the
normalized total profit versus the number of servers in the
cloud computing system of the proposed near-optimal
algorithm and the baseline algorithm. We can observe from
Figure 4 that the proposed near-optimal algorithm
consistently outperforms the baseline algorithm. Moreover,

the proposed algorithm achieves higher improvement
compared with the baseline algorithm when there are more
servers in the cloud computing system. This is partially
because the proposed algorithm has more freedom in
performing near-optimal application environment
assignment in this case, compared with baseline algorithm.

Figure 4. The normalized total profit versus the number of servers of the

proposed near-optimal algorithm and the baseline algorithm.

VI. CONCLUSION
In this paper, we consider the problem of SLA-based

joint application environment assignment and resource
allocation optimization in a data center in the cloud
computing framework. The objective is to maximize the total
profit, which is the total price gained from serving the clients
subtracted by the energy cost of the data center. The total
price depends on the average service request response time
for each client as defined in their utility functions. We
propose a near-optimal solution of the joint optimization
problem based on the Hungarian algorithm for the
assignment problem, as well as convex optimization
techniques, in a way that is similar to the constructive
partitioning algorithm in VLSI CAD. We also provide a
distributed version of the near-optimal solution comprised of
a central resource manager and distributed local agents, in
order to enhance the scalability of the solution. Experimental
results demonstrate that the proposed near-optimal joint
application environment assignment and resource allocation
algorithm consistently outperforms baseline algorithms.

REFERENCES
[1] B. Hayes, “Cloud Computing,” Communications of the ACM,

2008.
[2] R. Buyya, “Market-oriented cloud computing: vision, hype,

and reality of delivering computing as the 5th utility,” in 9th
IEEE/ACM International Symposium on Cluster Computing
and the Grid (CCGrid), 2009.

173173

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A.
Konwinski, G. Lee, D. Patterson, A. Pabkin, I. Stoica, and M.
Zaharia, “A view of cloud computing,” Communications of
the ACM, 2010.

[4] M. Pedram, “Energy-efficient datacenters”, IEEE Trans. on
CAD, 2012.

[5] L. A. Barroso and U. Holzle, “The case for energy-
proportional computing,” IEEE Computer, 2007.

[6] R. H. Katz, “Tech Titans Building Boon,” IEEE Spectrum,
2009.

[7] H. Goudarzi and M. Pedram, “Multi-dimensional SLA-based
resource allocation for multi-tier cloud computing systems,”
Proc. of IEEE Cloud, 2011.

[8] Y. Wang, S. Chen, H. Goudarzi, and M. Pedram, “Resource
allocation and consolidation in a multi-core server cluster
using a Markov decision process model,” Proc. of ISQED,
2013.

[9] Y. Wang, X. Lin, and M. Pedram, “A sequential game
perspective and optimization of the smart grid with distributed
data centers,” Proc. of IEEE ISGT, 2013.

[10] G. Wei, A. V. Vasilakos, Y. Zheng, and N. Xiong, “A game-
theoretic method for fair resource allocation for cloud
computing services,” The Journal of Supercomputing, 2010.

[11] R. Buyya and M. Murshed, “GridSim: A toolkit for the
modeling and simulation of distributed resource management
and scheduling for grid computing,” Concurrency and
Computation Practice & Experience, 2002.

[12] K. Krauter, R. Buyya, and M. Maheswaran, “A taxonomy and
survey of grid resource management systems for distributed
computing,” Software Practice and Experience, 2002.

[13] Z. Liu, M. S. Squillante, and J. L. Wolf, “On maximizing
service-level agreement profits,” in 3rd ACM Conference on
Electronic Commerce, 2001.

[14] L. Zhang and D. Ardagna, “SLA based profit optimization in
autonomic computing systems,” in 2nd Int. Conf. on Service
Oriented Computing, 2004.

[15] D. Ardagna, M. Trubian, and L. Zhang, “SLA based resource
allocation policies in autonomic environments,” Journal of
Parallel and Distributed Computing, 2007.

[16] A. Chandra, W. Gongt, and P. Shenoy, “Dynamic resource
allocation for shared clusters using online measurements,”
International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS), 2003.

[17] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and
R. P. Doyle, “Managing energy and server resources in
hosting centers,” in Proc. of the 18th ACM Symposium on
Operating Systems Principles (SOSP’01), 2001.

[18] X. Zhu and S. Singhal, “Optimal resource assignment in
Internet data centers,” in Proc. of the 9th International

Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunications Systems, 2001.

[19] C. Santos, X. Zhu, and H. Crowder, “A mathematical
optimization approach for resource allocation in large scale
clusters,” Technical Report HPL-2002-64, HP Labs, March
2002.

[20] W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das, “Utility
functions in autonomic computing,” in Proc. of IEEE
International Conf. on Autonomic Copmuting, 2004.

[21] M. N. Bennani and D. A. Menasce, “Resource allocation for
autonomic clusters using analytic performance models,” in
Proc. of the 2nd Int. Conf. on Autonomic Computing, 2005.

[22] S. Srikantaiah, A. Kansal, and F. Zhao, “Energy aware
consolidation for cloud computing,” in Workshop on Power
Aware Computing and Systems (HotPower’08), 2008.

[23] I. Hwang, T. Kam, and M. Pedram, “A study of the
effectiveness of CPU consolidation in a virtualized multi-core
server system,” in Proc. of International Symposium on Low
Power Electronics and Design (ISLPED), 2012.

[24] A. Papoulis, Probability, Random Variables, and Stochastic
Processes, McGraw-Hill, 3rd edition, 1991.

[25] A. K. Parekh, “A generalized processor sharing approach to
flow control in integrated services networks,” Ph.D. Thesis,
Department of Electrical Engineering and Computer Science,
MIT, Febrary 1992.

[26] Z. Zhang, D. Towsley, and J. Kurose, “Statistical analysis of
generalized processor sharing scheduling discipline,” ACM
SIGCOMM’94 Conf. on Communications Architectures,
Protocols and Applications.

[27] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in Proc. of the 19th ACM Symposium on
Operating System Principles (SOSP), 2003.

[28] C. Alpert and A. B. Kahng, “Recent directions in netlist
partitioning: a survey,” in Integration, the VLSI Journal,
1995.

[29] S. H. Gerez, Algorithms for VLSI Design Automation, John
Wiley & Sons, 1998.

[30] L. Kleinrock, Queueing Systems, Volume I: Theory, New
York: Wiley, 1975.

[31] S. Boyd and L. Vandenberghe, Convex Optimization,
Cambridge University Press, 2004.

[32] M. Grant and S. Boyd, “CVX: Matlab software for disciplined
convex programming, version 1.21.” http://cvxr.com/cvx,
Feb, 2011.

[33] H. W. Kuhn, “The Hungarian method for the assignment
problem,” Naval Research Logistics Quarterly, Vol. 2, Issue 1
– 2, pp. 83 – 97, March 1955.

174174

