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Abstract—Cloud computing have attracted a lot of attention 
recently due to increasing demand for high performance 
computing and storage. Resource allocation is one of the most 
important challenges in the cloud computing system especially 
when the clients have some Service Level Agreements (SLAs) 
and the total profit depends on how the system can meet these 
SLAs. Moreover, a data center typically hosts and manages a 
suite of application environments and a fixed number of 
servers that are allocated to these application environments in 
a way that maximizes a certain utility function. In this paper, 
we consider the problem of SLA-based joint optimization of 
application environment assignment, request dispatching from 
the clients to the servers, as well as resource allocation in a 
data center comprised of heterogeneous servers. The objective 
is to maximize the total profit, which is the total price gained 
from serving the clients subtracted by the operation cost of the 
data center. The total price depends on the average service 
request response time for each client as defined in their utility 
functions, while the operating cost is related to the total energy 
consumption. We propose a near-optimal solution of the joint 
optimization problem based on the Hungarian algorithm for 
the assignment problem, as well as convex optimization 
techniques, in a way that is similar to the constructive 
partitioning algorithm in VLSI computer-aided design (CAD). 
Experimental results demonstrate that the proposed near-
optimal joint application environment assignment and 
resource allocation algorithm outperforms baseline algorithms 
by up to 65.7%. 
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I. INTRODUCTION 
Cloud computing has been envisioned as the next-

generation computing paradigm for its advantages in on-
demand service, ubiquitous network access, location 
independent resource pooling, and transference of risk [1]. 
Cloud computing shifts the computation and storage 
resources from the network edges to a “Cloud” from which 
businesses and users are able to access applications from 
anywhere in the world on demand [2][3][4]. In cloud 
computing, the capabilities of business applications are 
exposed as sophisticated services that can be accessed over a 
network. Cloud service providers are incentivized by the 
profits by charging the clients for accessing these services. 

Clients are attracted by the opportunity for reducing or 
eliminating the costs associated with “in-house” provision of 
these services. It is essential that the clients have guarantees 
from service providers on service delivery. Typically, these 
are provided through Service Level Agreements (SLAs) 
brokered between the providers and consumers. The SLAs 
include computing power, storage space, network bandwidth, 
availability and security, etc. 

The underlying infrastructure of cloud computing 
consists of data centers and clusters of servers that are 
monitored and maintained by the cloud service providers [6]. 
Service providers often end up over-provisioning their 
resources in these servers in order to meet the clients’ SLAs 
[5]. Such over-provisioning may increase the cost incurred 
on the servers in terms of both the electrical energy cost and 
the carbon emission. Therefore, optimal provisioning or 
allocation of the resources is imperative in order to reduce 
the cost incurred on the servers as well as the environmental 
impact while satisfying the clients’ SLAs. The problem of 
optimal resource allocation in the cloud computing 
framework for serving the service requests of each client is 
therefore crucial and has been investigated in [7][8][9][10]. 
The more general problem of resource allocation and 
management in distributed computing system has been an 
active research topic in the recent ten years. There is a 
number of papers discussing the resource allocation problem 
in grid computing systems [11][12], in the framework of 
electronic commerce [13], in autonomic computing systems 
[14][15], in clusters of servers [16], and in hosting centers 
[17]. 

A data center typically hosts and manages a suite of 
complex Application Environments with diverse 
requirements and dynamic characteristics. For example, 
some Web applications experience highly bursty traffic 
whose workload intensity varies dramatically during 
different time of day, or day of week. The data center also 
has a fixed number of servers that are (dynamically) 
allocated to these various application environments in a way 
that maximizes a certain utility function, as discussed in [20]. 
References [18][19][20][21] introduce the application 
environment assignment problem, i.e., determining which 
subset of the available servers should be allocated to run 
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each application environment, where each server can run at 
most one application environment. However, they suffer 
from either the scalability problem, or the lack of exploiting 
the opportunity of joint application environment assignment 
and resource allocation to maximize the total profit. The 
latter opportunity is especially important since the results of 
application environment assignment and resource allocation 
affect each other in an interactive manner. 

In this paper, we consider the problem of SLA-based 
joint application environment assignment and resource 
allocation optimization in a data center comprised of 
heterogeneous servers. Multiple clients exist in this 
framework, each generating service requests in a different 
rate. A client runs one or multiple types of application 
software, which require processing, data storage, and 
communication resources in the cloud computing system. 
Each client in this system has a pre-defined utility function 
based on its response time requirements. The data center 
consists of multiple potentially heterogeneous servers. The 
total profit in this cloud computing system is the total price 
gained from serving the clients subtracted by the cost of 
operating the turned on servers in the system, where the 
operating cost of turned on servers is proportional to their 
energy consumptions. 

Different from the prior work, we propose a joint 
optimization framework considering the optimal application 
environment assignment, request dispatching from the clients 
to the servers, as well as the optimal resource allocation in 
the servers. We propose a near-optimal solution of this joint 
optimization problem, which is motivated by the VLSI 
computer-aided design (CAD) algorithm for constructive 
partitioning (partitioning by clustering) of circuit netlists 
[28][29]. We define and compute an affinity value for each 
application environment-server pair based on the resource 
allocation optimization results, where a higher affinity value 
indicates that it is more preferable to assign the 
corresponding application environment to the server. We 
allocate a subset of servers based on the affinity values, one 
for each application environment. We recalculate the affinity 
values and proceed with this assignment procedure. The 
near-optimal solution is based on the Hungarian algorithm 
for the assignment problem [33], as well as convex 
optimization techniques [31][32]. Experimental results 
demonstrate that the proposed near-optimal joint application 
environment assignment and resource allocation algorithm 
outperforms baseline algorithms by up to 65.7%. 

The rest of this paper is organized as follows. The system 
model for joint application environment assignment and 
resource allocation in the cloud computing system is 
introduced in Section II. The optimization problem 
formulation is provided in Section III. The proposed near-
optimal algorithm is provided in Section IV. Experimental 
results and conclusion are presented in Section V and 
Section VI, respectively. 

 

II. SYSTEM MODEL AND PROBLEM FORMULATION 
Figure 1 shows the structure of the target cloud 

computing resource allocation system with a set of � clients, 
a data center, as well as a central resource management node. 
The data center hosts � application environments and has � 
potentially heterogeneous servers that should be allocated to 
run the application environments. The central manager has 
information about the data center as well as the clients. 
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Figure 1.  Conceptual structure of the application environment assignment 
and resource allocation system in cloud computing, with � � � and � � �. 

 
Each client in the system is identified by a unique ID, 

represented by index i. Each application environment in the 
data center is represented by index j. Similarly, each server 
in the data center is captured by index k. Each server can be 
allocated by the central manager to run at most one 
application environment. An application environment can be 
assigned to multiple servers. Let �	
��  denote the 
application environment assigned to the k-th server in the 
data center. Let 


�� denote the set of servers allocated to 
run the j-th application environment. 

A client runs one or more types of applications and 
generates service requests to be served in the data center. Let ���
��  denote the set of applications running in the i-th 
client. In order to find the analytical form of the response 
time, the service requests generated from each i-th client are 
assumed to follow a Poisson process with an average 
generating rate of �� (predicted based on the behavior of the 
client.) We assume that a portion �����  of these service 
requests is generated from the j-th application, where the 
superscript �  stands for ‘Generating’. We have ����� � �  if 
the j-th application is not running in the i-th client, i.e., � � ���
��. Then according to the properties of the Poisson 
process, the service requests that are generated from the j-th 
application of the i-th client follow a Poisson process with an 
average rate of ���� � ����� � �� [24]. 

Service requests generated by a single application in a 
single client can be assigned to multiple servers in the data 

168168



center, as long as these servers are allocated to run such 
application environment. The request dispatcher assigns a 
request generated from the j-th application of the i-th client 
to the k-th server in the data center with probability ������� , 
where the superscript � stands for ‘Dispatching’. Please note 
that we have ������� � �  as long as � � �	
�� . These �������  
probability values are the optimization variables in the 
resource allocation optimization framework. According to 
the properties of the Poisson distribution [24], service 
requests that are generated from the j-th application of the i-
th client and dispatched to the k-th server in the data center 
follow a Poisson process with an average rate of ���� � ������� . 
As long as a service request is dispatched to a server, the 
server creates a dedicated virtual machine (VM) for that 
service request, loads the application executable and starts 
execution [27].  

To model the multi-class queues in the cloud computing 
system, the Generalized Processor Sharing model [25][26] is 
used. It has been shown that the GPS can be implemented by 
weighted fair queueing if the service times of packets are not 
too large. Let ����  denote the portion of computation 
resources of the k-th server that is allocated for the i-th client.  

All multi-class single server queues can be replaced by 
single class single server queues using the GPS model. To 
model the response time of the service requests in the cloud 
computing system, by using the well-known formula in 
M/M/1 queues [30], the average response time of the service 
requests generated from the i-th client and dispatched to the 
k-th server (i.e., the application type � � �	
��) is given by: 

���� ���!"
����� # ����$ 

� % &'!"
���� � ���� ( ���!"
����� � ���!"
�� � )*+���!"
����� , �
��+++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++++-./012)30 

(1) 

for ���!"
�� , � (i.e., �	
�� 4 ���
��). In Eqn. (1), '!"
���� 
denotes the average processing speed of the k-th server in 
processing service requests from application type �	
�� , 
when all the resources in the server has been allocated. The 
overall average response time of client i can be calculated as: 

�� � 5 ���!"
��� � ���!"
�����
!"
��4���
�� � ���� ���!"
����� # ����$ 

(2) 

The power consumption of each k-th server if it is turned ON 
is modeled as a constant term plus another component 
linearly related to the utilization of the server in the 
processing domain, given by:  

6��789:; < 6��=�9 � 5����
>

�?@  (3) 

The objective of the joint application environment 
assignment and resource management problem is to 

maximize the total profit of the data center from serving the 
clients. In this system, decision making intervals can be 
defined based on the behavior of the dynamic parameters in 
the system. This is because the solution found by the 
presented algorithm is acceptable only when the parameters 
used to find the solution are approximately valid. Although 
some small changes in the parameters can be effectively 
tracked and responded to by proper reactions of the central 
resource manager in the data center, large changes cannot be 
handled in this way. In the remainder of this paper, the joint 
application environment assignment and resource allocation 
problem at each decision epoch is presented and a solution is 
provided, but we do not discuss the estimation, prediction, 
and dynamic changes in the system because these issues are 
out of the scope of this paper. 

  

III. OPTIMIZATION PROBLEM FOMULATION 
Let A�
�� denote the non-increasing utility function of 

the i-th client with the average service request response time 
equal to �. In the rest of this paper, we use a linear-form 
decreasing utility function in the optimization problem, i.e., A�
�� � B� ( C� D �, similar to the utility function exploited 
in [7][8]. Let E�  denote the pseudo-Boolean integer to 
represent if the k-th server is turned ON (E� � &) or OFF 
(E� � �).  �	
�� and ���� can be arbitrary value if E� � �, 
i.e., we are only interested in the �	
�� and ���� values for E� � &. In this optimization problem, E� , �	
��, ���!"
����� , 
and ����  values are the optimization variables. The other 
parameters are either constants or functions of these 
optimization variables. 

The overall joint optimization problem of application 
environment assignment, request dispatching, and resource 
allocation for the data center is formulated as a profit 
maximization problem as below: 

Find the optimal E�’s, �	
��’s, ���!"
����� ’s, and ����’s. 
Maximize: 

5�� � 
B� ( C� D ���>
�?@  

(6F�GH � 5E� � I6��789:; < 6��=�9 �5����
>

�?@ JK
�?@  

(4) 

Subject to: E� 4 L��&M� *-1 N� 4 L&�O� P � �M� (5) � Q ���!"
����� Q &�+++*-1+N�� ��+ (6) � Q ���� Q &�+++*-1+N�� ��+ (7) ���!"
����� � ���!"
�� Q '!"
���� � �����+++*-1 N�� �� (8) 

5 ������� � &�R!"
��?� �+++*-1+N�� ��+ (9) 
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5���� Q &>
�?@ �+++*-1+N� 4 L&�O� P � �M�+ (10) 

E� S 5����
>

�?@ �+++*-1+N��+ (11) 

where 6F�GH is the unit energy price at this decision epoch.  
In the objective function (4), the first term is the total 

price gained from serving all the service requests, and the 
second term is the total energy cost for operating the data 
center. Constraints (5) - (7) specify the domains of the 
optimization variables. Constraint (8) shows a lower limit on 
the resource allocation in each server. Constraint (9) ensures 
that all requests generated by a client are served. Constraint 
(10) limits the total amount of allocated resource in each 
server. Constraint (11) determines the set of turned ON 
servers based on the allocated resources. 

The overall joint application environment assignment and 
resource allocation problem is a mixed integer nonlinear 
programming problem. The problem cannot be solved using 
the conventional convex optimization methods [31][32] 
since the objective function (4) is neither convex nor 
concave even if the optimal values of the integer variables E�’s and �	
��’s are given in prior, i.e., the set of servers 
that are turned ON and the application environment 
assignment results are given in prior. 

 

IV. OPTIMIZATION METHODS 
The joint application environment assignment and 

resource allocation problem presented in the previous section 
is a hard problem due to the non-convexity of the objective 
function as well as the existence of integer variables E�’s and �	
�� ’s. The simple problem solvers cannot solve this 
problem except in the case of very small input size by 
running exhaustive search or by using stochastic 
optimization methods such as the Simulated Annealing or 
Genetic Algorithm. In this section, a near-optimal solution is 
presented for this problem. 

The proposed near-optimal solution is motivated by the 
algorithm of constructive partitioning, i.e., partitioning by 
clustering, of circuit netlists in VLSI CAD [28][29]. More 
specifically, the near-optimal solution consists of two steps. 
In the first step, we perform effective application 
environment assignment and find the near-optimal integer 
values E�  and �	
�� . We define and compute an affinity 
value �TT
�� �� for each application j and server k, where a 
higher affinity value indicates that it is more preferable to 
assign the corresponding j-th application environment to the 
k-th server. We allocate a subset of � servers based on the 
affinity values, one for each application environment. We 
recalculate these affinity values for the remaining servers and 
proceed with this assignment procedure. The first step is 
based on the Hungarian algorithm for the assignment 

problem [33], as well as convex optimization techniques 
[31][32]. In the second step, we perform effective service 
request dispatching and resource allocation, i.e., finding the 
near-optimal ���!"
�����  and ����  values, based on the results 
of application environment assignment. The second step is 
based on iterative optimization and convex programming 
techniques. We will elaborate the details of the near-optimal 
algorithm in the following three subsections. 

 

A. Calculating the Affinity Values 
We introduce in the following the proposed method to 

calculate the affinity values �TT
�� ��’s. A higher affinity 
value �TT
�� �� indicates that it is more preferable to assign 
the j-th application environment to the k-th server. We 
formally present the calculation procedure of the affinity 
values as follows. 

Client i

Client 1

Client N

1,λ j

,λi j

,λN j

1, 1, ,λ D
j j kp

, , ,λ D
i j i j kp

, , ,λ D
N j N j kp

1,φ k

,φi k

,φN k

Resource Allocation

Server k

 
Figure 2.  Conceptual structure illustrating the calculation of affinity value �TT
�� ��. 

 
In order to calculate the �TT
�� ��  value, we only 

consider dispatching service requests of the j-th application 
environment to the k-th server. As illustrated in Figure 2, the 
service requests of the j-th application environment are 
generated from the 1st, 2nd, …., �-th clients with average rate 
of �@�� , �U�� , … , and �>�� , respectively. We dispatch a 
portion �������  of such service requests from each i-th client to 
the k-th server. We allocate a portion ���� of resources in the 
k-th server to serve the requests generated from the i-th 
client. The objective is to maximize the ratio of the total 
price gained by the k-th server from serving the requests to 
the energy cost, which is given by: 

V ���� D ������� D WB� ( C� D ���� ������� # ����$X�R�4���
��6F�GH �  6��789:; < 6��=�9 � V �����R�4���
�� $ (12) 
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The optimization variables are ������� ’s and ���� ’s. The 
constraints are given as follows: 

� Q ������� Q &�+++*-1+N��+ (13) � Q ���� Q &�+++*-1+N��+ (14) ������� � ���� Q '��� � �����+++*-1+N��+ (15) 

5 �����R�4���
�� Q &�+ (16) 

We name this optimization problem the Maximum Ratio 
Optimization (MRO) problem. Suppose that the MRO 
problem has been optimally solved. Let �������Y ’s and ����Y ’s 
denote the optimal values of the optimization variables in the 
MRO problem. Then the affinity value �TT
�� �� is defined 
as the corresponding total profit, which is given by: 

�TT
�� �� � 5 �����R�4���
��D �������Y WB� ( C����� �������Y # ����Y $X 

(6F�GH � Z6��789:; < 6��=�9 � 5 ����Y�R�4���
�� [
(17) 

We will provide the solution of the MRO problem as 
follows. 

The MRO problem is a non-convex optimization 
problem with continuous optimization variables, because the 
objective function (12) is neither convex nor concave with 
respect to the optimization variables ������� ’s and ���� ’s. It 
cannot be solved optimally using conventional convex 
optimization techniques. We propose an iterative near-
optimal solution of the MRO problem and calculation of �TT
�� �� as shown in Algorithm 1. In each iteration, the 
near-optimal solution consists of an optimal resource 
allocation phase and an optimal request dispatching phase 
as follows. 

The Optimal Resource Allocation Phase: In this phase, 
the controller finds the optimal ����  values in order to 
maximize the objective function (12) when the �������  values 
are given. The constraints are (14), (15), and (16). This 
optimization problem is a quasi-convex optimization 
problem [31] since (i) the nominator of the objective 
function (12) to maximize is a concave function of ���� ’s 
when the �������  values are given, whereas the denominator of 
(12) is a linear function of ����’s; (ii) the constraints (14), 
(15), and (16) are linear inequality constraints. Such quasi-
convex optimization problem can be transformed into a set 
of standard convex optimization problem and solved 
optimally within polynomial time complexity [31]. 

The Optimal Request Dispatching Phase: In this phase, 
the controller finds the optimal �������  values so as to 
maximize the objective function (12) when the ����  values 

are given. The constraints are (13) and (15). This problem is 
also a convex optimization problem since (i) the objective 
function (12) is a concave function of ������� ’s when the ���� 
values are given, and (ii) the constraints (13) and (15) are 
linear inequality constraints. Therefore, it could be solved 
optimally with polynomial time complexity using standard 
convex optimization techniques [31][32]. 

 

Algorithm 1: Near-Optimal Solution of the MRO Problem and 
Calculating the affinity value �TT
�� ��. 

Initialize the �������  values. 

Do the following procedure iteratively: 
Optimal resource allocation: Find the optimal ���� values that 
maximize the objective function (12) based on the derived �������  values, using quasi-convex optimization methods. 

Optimal request dispatching: Find the optimal �������  values that 
maximize the objective function (12) based on the derived ���� 
values, using convex optimization methods. 

Until the solution converges. 

Calculate the �TT
�� �� value using (17) based on the near-optimal 
solution of the MRO problem. 

 

B. Optimization of Application Environment Assignment 
After we have calculated the �TT
�� ��  values, we 

allocate a subset of �  servers to execute the application 
environments, one for each application environment. 
Essentially, we find a map T
��  from each application 
environment �  to a server index, such that the following 
summation of affinity values is maximized: 

5�TT
�� T
���\
�?@ + (18) 

This is the well-known assignment problem with unequal 
numbers of “agents” and “tasks” [33], since the number of 
servers is larger than the number of application environments 
(i.e., � ] �) in this case. We add dummy nodes to the set of �  application environment to make the total number of 
elements the same as the total number of servers, i.e., � . 
Then we use standard solution of the assignment problem 
such as the Hungarian method to optimally solve this 
problem with polynomial time complexity [33]. 

After the first round, only � servers have been allocated 
to run the application environments. We update the affinity 
values for the application environment-server pairs of the � ( � unallocated servers, based on the remaining service 
requests (without dispatched to the servers) that are 
generated from each j-th application environment. We again 
allocate another �  servers using the Hungarian algorithm 
based on the updated affinity values. We proceed until there 
are no remaining service requests from any application 
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environment. In this way, we obtain the near-optimal 
application environment assignment results and the set of 
turned ON servers, i.e., the �	
��  and E�  values. A brief 
summary of the proposed near-optimal solution for 
application environment assignment is provided in 
Algorithm 2. Implementation details are omitted due to space 
limitation. 

 

Algorithm 2: Near-Optimal Solution for Application 
Environment Assignment. 

While there are remaining service requests without dispatched to 
the servers: 

Calculate the �TT
�� �� values for the unallocated servers. 
Allocate �  servers to run the application environments to 
maximize the total affinity value, using the Hungarian 
algorithm. 
Set the �	
�� values of the � servers, and set their E� values 
to 1 (turned ON.) 
Dispatch the corresponding portions of service requests from 
the application environments to the servers, and calculate the 
remaining amounts of service requests of each application 
environment. 

End. 
 

C. Optimization of Request Dispatching and Resource 
Allocation 
In the last phase of the overall optimization algorithm, 

near-optimal values of the integer variables E�  and �	
�� 
are given from the prior application environment assignment 
procedure. The objective is to perform near-optimal service 
request dispatching as well as resource allocation, i.e., 
finding the near-optimal ���!"
�����  and ����  values, so as to 
maximize the objective function (4). The constraints are (6) – 
(10). We name this profit maximization problem the 
Resource Allocation and Request Dispatching (RARD) 
optimization problem. The optimization variables of the 
RARD problem are the ���!"
�����  and ���� values, which are 
all continuous variables. 

The RARD problem cannot be solved using conventional 
convex optimization methods since the objective function (4) 
is still neither convex nor concave even when the integer 
variable values E� ’s and �	
�� ’s are given in prior. We 
propose an iterative near-optimal solution of this 
optimization problem as shown in Algorithm 3. In each 
iteration, Algorithm 3 has an optimal resource allocation 
phase as well as an optimal request dispatching phase as 
follows: 

The Optimal Resource Allocation Phase: In this phase, 
the controller finds the optimal ����  values in order to 
maximize the objective function (4) when the ���!"
�����  
values are given. The constraints are (7), (8), and (10). This 
problem is a convex optimization problem since the 

objective function (4) is a concave function of ����’s when 
the ���!"
�����  values are given, and constraints (7), (8), and 
(10) are linear inequality constraints. It can be solved 
optimally within polynomial time complexity using standard 
convex optimization techniques [31][32]. 

The Optimal Request Dispatching Phase: In this phase, 
the controller finds the optimal ���!"
�����  values so as to 
maximize the objective function (4) when the ���� values are 
given. The constraints are (6), (8), and (9). This problem is 
also a convex optimization problem since the objective 
function (4) is a concave function of ���!"
����� ’s when the ����  values are given, and therefore, it could be solved 
optimally with polynomial time complexity using standard 
convex optimization techniques [31][32]. 

 

Algorithm 3: Near-Optimal Solution of the RARD Problem. 

Initialize the ���!"
�����  values. 

Do the following procedure iteratively: 
Optimal resource allocation: Find the optimal ���� values that 
maximize the objective function (4) based on the derived ���!"
�����  values. 

Optimal request dispatching: Find the optimal ���!"
�����  values 
that maximize the objective function (4) based on the derived ���� values. 

Until the solution converges. 
 

V. EXPERIMENTAL RESULTS 
In this section, we implement the joint application 

assignment and resource allocation optimization framework 
and compare the proposed near-optimal algorithm with 
baseline resource allocation algorithms. 

We consider a data center of 20 heterogeneous servers 
(we will change this number later in the experiments.) We 
consider 4 clients generating service requests from 3 types of 
application environments in the cloud computing system. We 
use normalized amounts of most of the parameters in the 
cloud computing system instead of their real values. The 
average service request generating rate ����  from each j-th 
application of each i-th client is a uniformly distributed 
random variable between 1 and 4. The maximum average 
processing speed of each k-th server for processing service 
requests from application type j, denoted by '��� , is a 
uniformly distributed random variable between 2 and 20. For 
the power consumption in each k-th server, the 6��789:; term 
is a uniformly distributed random variable between 1 and 5, 
whereas the 6��=�9  term is a uniformly distributed random 
variable between 5 and 15. For the utility functions, each C� 
value is assumed to be a uniformly distributed random 
variable between 2 and 3, and the B� values are assumed to 
be equal to 7. The unit energy price 6F�GH is initialized to be 
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1. We will change the 6F�GH  parameter later in the 
experiments.  

We compare the total profit of the cloud computing 
system achieved by the proposed near-optimal algorithm 
with that achieved by the baseline algorithm. In the baseline 
algorithm, the application environments are randomly 
assigned to the servers in the cloud computing system. The 
baseline algorithm performs near-optimal request 
dispatching and resource allocation using the iterative 
algorithm described in Section IV.C. 

In the first experiment, we change the unit energy price 6F�GH from 0.4 to 1.6 and compare the total profit achieved 
by the proposed algorithm and the baseline algorithm. Figure 
3 illustrates the normalized total profit versus the unit energy 
price of the proposed near-optimal algorithm and the 
baseline algorithm. We can observe from Figure 3 that the 
proposed near-optimal algorithm consistently outperforms 
the baseline algorithm. Moreover, it can be observed that the 
proposed near-optimal algorithm achieves higher 
improvement compared with the baseline algorithm when the 
unit energy price is higher. For example, when the unit 
energy price is 1.0, the total profit obtained by the proposed 
algorithm is 37.2% higher than the baseline algorithm. When 
the unit energy price is 1.6, the total profit obtained by the 
proposed algorithm is 65.7% higher than the baseline 
algorithm. 

 

 
Figure 3.  The normalized total profit versus the unit energy price of the 

proposed near-optimal algorithm and the baseline algorithm. 

 
In the second experiment, we change the number of 

servers in the cloud computing system from 15 to 30, and 
compare the total profit achieved by the proposed algorithm 
and the baseline algorithm. In this experiment, we fix the 
unit energy price 6F�GH  to be 1. Figure 4 illustrates the 
normalized total profit versus the number of servers in the 
cloud computing system of the proposed near-optimal 
algorithm and the baseline algorithm. We can observe from 
Figure 4 that the proposed near-optimal algorithm 
consistently outperforms the baseline algorithm. Moreover, 

the proposed algorithm achieves higher improvement 
compared with the baseline algorithm when there are more 
servers in the cloud computing system. This is partially 
because the proposed algorithm has more freedom in 
performing near-optimal application environment 
assignment in this case, compared with baseline algorithm. 

 

 
Figure 4.  The normalized total profit versus the number of servers of the 

proposed near-optimal algorithm and the baseline algorithm. 

 

VI. CONCLUSION 
In this paper, we consider the problem of SLA-based 

joint application environment assignment and resource 
allocation optimization in a data center in the cloud 
computing framework. The objective is to maximize the total 
profit, which is the total price gained from serving the clients 
subtracted by the energy cost of the data center. The total 
price depends on the average service request response time 
for each client as defined in their utility functions. We 
propose a near-optimal solution of the joint optimization 
problem based on the Hungarian algorithm for the 
assignment problem, as well as convex optimization 
techniques, in a way that is similar to the constructive 
partitioning algorithm in VLSI CAD. We also provide a 
distributed version of the near-optimal solution comprised of 
a central resource manager and distributed local agents, in 
order to enhance the scalability of the solution. Experimental 
results demonstrate that the proposed near-optimal joint 
application environment assignment and resource allocation 
algorithm consistently outperforms baseline algorithms. 
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