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!! BackgroundBackground

"" Power optimization techniquesPower optimization techniques

"" Dynamic power managementDynamic power management

!! Simple systemsSimple systems
"" Continuous Time Markov Decision Process (CTMDP)Continuous Time Markov Decision Process (CTMDP)

"" Model construction and optimizationModel construction and optimization

"" Experimental resultsExperimental results

!! Complex systemsComplex systems
" Generalized Stochastic Petri Nets (GSPN)

" Model construction and optimization

" Experimental results

!! ConclusionsConclusions
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!! Power has become a major consideration in VLSI designPower has become a major consideration in VLSI design
"" Power consumption will increase significantly in next few yearsPower consumption will increase significantly in next few years

"" High power consumption increases the packaging and cooling costHigh power consumption increases the packaging and cooling cost
and decreases the system reliabilityand decreases the system reliability

"" The battery technology cannot keep pace with the VLSI technologyThe battery technology cannot keep pace with the VLSI technology

MotivationMotivationMotivationMotivationMotivationMotivationMotivationMotivation
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Power Saving TechniquesPower Saving TechniquesPower Saving TechniquesPower Saving TechniquesPower Saving TechniquesPower Saving TechniquesPower Saving TechniquesPower Saving Techniques
!! Voltage and process scalingVoltage and process scaling

!! LowLow kk dielectric and copper interconnectdielectric and copper interconnect

!! PowerPower--aware compiler and architecture designaware compiler and architecture design

!! Power control and management techniquesPower control and management techniques

!! Dynamic voltage and frequency scaling based onDynamic voltage and frequency scaling based on
workloadworkload

!! Better cell library design and resizing methodsBetter cell library design and resizing methods

!! Circuit design techniquesCircuit design techniques

!! Low powerLow power--driven bus encoding techniquesdriven bus encoding techniques

!! Low power design methodologiesLow power design methodologies

!! PowerPower--conscious synthesis and design toolsconscious synthesis and design tools
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Dynamic Power Management (DPM)Dynamic Power Management (DPM)Dynamic Power Management (DPM)Dynamic Power Management (DPM)Dynamic Power Management (DPM)Dynamic Power Management (DPM)Dynamic Power Management (DPM)Dynamic Power Management (DPM)

!! It is a system level power optimization techniqueIt is a system level power optimization technique

!! DDPM causes transitions betweenPM causes transitions between the system powerthe system power
modes to reduce power or energy dissipationmodes to reduce power or energy dissipation whilewhile
meetingmeeting thethe performance constraintperformance constraintss

!! Idle or underIdle or under--utilized components can be shut downutilized components can be shut down
or slow downor slow down

!! Policy refers to the type and timing of the powerPolicy refers to the type and timing of the power
mode transition. Finding an optimal powermode transition. Finding an optimal power
management policy is a complex problem even for amanagement policy is a complex problem even for a
simple systemsimple system

1

A Simple Example of DPMA Simple Example of DPMA Simple Example of DPMA Simple Example of DPMA Simple Example of DPMA Simple Example of DPMA Simple Example of DPMA Simple Example of DPM
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Heuristic ApproachesHeuristic ApproachesHeuristic ApproachesHeuristic ApproachesHeuristic ApproachesHeuristic ApproachesHeuristic ApproachesHeuristic Approaches
Service Requestor Service Provider

Inter-arrival time
Service RequesterService Requester

tON tidleTTR TTR

Service ProviderService Provider

{“ON”, “OFF”}

Heuristic PoliciesHeuristic PoliciesHeuristic PoliciesHeuristic PoliciesHeuristic PoliciesHeuristic PoliciesHeuristic PoliciesHeuristic Policies

!! Greedy policyGreedy policy
"" Turn on the server when request comesTurn on the server when request comes

"" Turn off the server when it is idleTurn off the server when it is idle

"" Does not consider switching penaltyDoes not consider switching penalty

!! TimeTime--out policyout policy
"" Turn on the server when request comesTurn on the server when request comes

"" Turn off when the server has been idle for TTurn off when the server has been idle for Tthresholdthreshold

"" No formal way to decide optimalNo formal way to decide optimal TTthresholdthreshold

"" Waste power during timeWaste power during time--outout

"" Performance penalty of wake upPerformance penalty of wake up
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Predictive PolicyPredictive PolicyPredictive PolicyPredictive PolicyPredictive PolicyPredictive PolicyPredictive PolicyPredictive Policy

!! Srivastva, Chandrakasan, et, al. 1996Srivastva, Chandrakasan, et, al. 1996
"" PredictPredict ttidleidle based on the historybased on the history

"" Regression analysis based predictorRegression analysis based predictor

"" IfIf tt′′ idleidle[[ii]] >> TTthresholdthreshold, turn off the device., turn off the device.

"" Turn on the device as soon as request comesTurn on the device as soon as request comes

!! C.H. Huang, et. al. 1997C.H. Huang, et. al. 1997
"" PrePre--wakeup the device after it has been idle forwakeup the device after it has been idle for tt′′ idleidle

"" Reduces timing penalty in wake up, but consumes more powerReduces timing penalty in wake up, but consumes more power

Stochastic Based ApproachStochastic Based ApproachStochastic Based ApproachStochastic Based ApproachStochastic Based ApproachStochastic Based ApproachStochastic Based ApproachStochastic Based Approach

!! DPM based on Discrete Time Markov Decision ProcessDPM based on Discrete Time Markov Decision Process
(DTMDP) by L.(DTMDP) by L. BeniniBenini et. al., 1998et. al., 1998
"" The system is modeled as DTMDPThe system is modeled as DTMDP

"" The optimal policy is obtained using Linear Programming (LP)The optimal policy is obtained using Linear Programming (LP)

"" Significant improvement in theoretical frameworkSignificant improvement in theoretical framework

"" Limitations:Limitations:
## Some assumptions are not practicalSome assumptions are not practical

## The state transition probability is difficult to obtainThe state transition probability is difficult to obtain

## Power Manager (PM) needs to send control signal in every timePower Manager (PM) needs to send control signal in every time--
sliceslice
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Operating SystemOperating SystemOperating SystemOperating SystemOperating SystemOperating SystemOperating SystemOperating System--------directed Power directed Power directed Power directed Power directed Power directed Power directed Power directed Power 
Management (OSPM)Management (OSPM)Management (OSPM)Management (OSPM)Management (OSPM)Management (OSPM)Management (OSPM)Management (OSPM)
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A Simple PowerA Simple PowerA Simple PowerA Simple PowerA Simple PowerA Simple PowerA Simple PowerA Simple Power--------managed Systemmanaged Systemmanaged Systemmanaged Systemmanaged Systemmanaged Systemmanaged Systemmanaged System

!! A single SP, a SQ and a SRA single SP, a SQ and a SR
!! The request interThe request inter--arrival time, service time and SParrival time, service time and SP

switching times are assumed to follow exponentialswitching times are assumed to follow exponential
distributiondistribution

!! The System is modeled as a Continuous Time MarkovThe System is modeled as a Continuous Time Markov
Decision Process (CTMDP)Decision Process (CTMDP)

W R R

Power Manager (PM)Power Manager (PM)

Service Requestor (SR)Service Requestor (SR)

Service Queue (SQ)Service Queue (SQ)

Service Provider (SP)Service Provider (SP)
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A Complex PowerA Complex PowerA Complex PowerA Complex PowerA Complex PowerA Complex PowerA Complex PowerA Complex Power--------managed Systemmanaged Systemmanaged Systemmanaged Systemmanaged Systemmanaged Systemmanaged Systemmanaged System

!! Multiple SP’s,Multiple SP’s, SQ’sSQ’s and SR’sand SR’s

!! Complex system behavior and components interactionComplex system behavior and components interaction

!! The system is modeled as a Controllable GeneralizedThe system is modeled as a Controllable Generalized
Stochastic Petri Net (CGSPN)Stochastic Petri Net (CGSPN)
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Continuous Time Markov ProcessContinuous Time Markov ProcessContinuous Time Markov ProcessContinuous Time Markov ProcessContinuous Time Markov ProcessContinuous Time Markov ProcessContinuous Time Markov ProcessContinuous Time Markov Process
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♦♦♦♦ stochastic process: a family of
random variables {X(t), t≥≥≥≥0}

♦♦♦♦ Markov process: a stochastic
process that for any time t0<t1<
…………<tn<t, P[X(t) ≤≤≤≤ x | X(tn) = xn, …………,
X(t0) = x0] = P[X(t) ≤≤≤≤ x| X(tn) = xn]
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Controllable Markov ProcessControllable Markov ProcessControllable Markov ProcessControllable Markov ProcessControllable Markov ProcessControllable Markov ProcessControllable Markov ProcessControllable Markov Process

σσσσi,j can be controlled by command ai

Action ai: A command taken in state i

Action Set Ai: Available commands in state i

ii jj

σσσσi,j(ai)
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Deterministic vs. Randomized PolicyDeterministic vs. Randomized PolicyDeterministic vs. Randomized PolicyDeterministic vs. Randomized PolicyDeterministic vs. Randomized PolicyDeterministic vs. Randomized PolicyDeterministic vs. Randomized PolicyDeterministic vs. Randomized Policy

!! Policy (Policy (ππππππππ): The set of state): The set of state--command pairscommand pairs

<<ii,, aa((tt)>,)>, aa((tt))∈∈ AAii

!! Deterministic policyDeterministic policy
"" The actionThe action aa((tt) is chosen from) is chosen from AAii with probability 1with probability 1

!! Randomized policyRandomized policy
"" The actionThe action aa∈∈ AAii is chosen with probabilityis chosen with probability

"" ,, aa∈∈ AAii

)(tpa
i

1)( =∑ tp
a

i
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Controllable Markov Process With CostControllable Markov Process With CostControllable Markov Process With CostControllable Markov Process With CostControllable Markov Process With CostControllable Markov Process With CostControllable Markov Process With CostControllable Markov Process With Cost
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State Cost Rate:State Cost Rate:

cii: System cost per unit time if system stays in state i

cij: System cost if system makes a transition from state i to
state j

Markov Decision ProcessMarkov Decision ProcessMarkov Decision ProcessMarkov Decision ProcessMarkov Decision ProcessMarkov Decision ProcessMarkov Decision ProcessMarkov Decision Process
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System Cost :System Cost :

Policy optimization: Find an optimal policy π such that the
average cost is minimized

Stationary policy: ai(t) (or ) is the same for all times

Theorem: A stationary policy is optimal for the Markov
decision process

)(tp ia
i

The system cost in a Markov decision process is policy
dependent

pi⇒j(τ): state probability of j
at time τ if the system initial
state is i
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Constrained Markov Decision ProcessConstrained Markov Decision ProcessConstrained Markov Decision ProcessConstrained Markov Decision ProcessConstrained Markov Decision ProcessConstrained Markov Decision ProcessConstrained Markov Decision ProcessConstrained Markov Decision Process
!! The system contains an objective costThe system contains an objective cost c_c_objobj andand

several constraint costsseveral constraint costs c_conc_con
"" Definitions ofDefinitions of c_c_objobj andand c_conc_con are systemare system--dependentdependent

!! Constrained policy optimizationConstrained policy optimization

)_(Minimize ,
ππππ
avgiobjcπ

Constraint_:thatsuch , <ππππ
avgiconc

!! Theorem: If the constraint is inactive, the optimalTheorem: If the constraint is inactive, the optimal
policy is a deterministic policy, otherwise it may be apolicy is a deterministic policy, otherwise it may be a
randomized policyrandomized policy

Simple DPM System Modeling: Simple DPM System Modeling: Simple DPM System Modeling: Simple DPM System Modeling: Simple DPM System Modeling: Simple DPM System Modeling: Simple DPM System Modeling: Simple DPM System Modeling: 
OverviewOverviewOverviewOverviewOverviewOverviewOverviewOverview

!! Each component is modeled as a CTMDPEach component is modeled as a CTMDP

!! The entire system is modeled as a composition of theThe entire system is modeled as a composition of the
individual component modelsindividual component models

!! The generator matrix of the composed model isThe generator matrix of the composed model is
calculated using a Tensor sum operationcalculated using a Tensor sum operation

!! Special effort is expended to correctly handle theSpecial effort is expended to correctly handle the
synchronization between SP and SQsynchronization between SP and SQ

!! The idle and busy states of the SP are separated;The idle and busy states of the SP are separated;
Transitions from busy to idle state is not controllableTransitions from busy to idle state is not controllable

!! Constraints are applied to the action sets to ensure thatConstraints are applied to the action sets to ensure that
the overall model is reasonable. This also ensures thatthe overall model is reasonable. This also ensures that
the policy optimization problem can be solvedthe policy optimization problem can be solved
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Service Provider (SP)Service Provider (SP)Service Provider (SP)Service Provider (SP)Service Provider (SP)Service Provider (SP)Service Provider (SP)Service Provider (SP)

Required information:Required information: powerpower
modes, actions, parametersmodes, actions, parameters

ji ss ,/1 χ

ene(si, sj)

Average transition time

Energy cost

pow(si)

µ(si)

Power consumption

Average service speed

S={active1, active2, wait, sleep}

A={go_active1, go_active2, go_wait, go_sleep}

WaitWait

active1
active1

SleepSleep

active2
active2

Busy state vs. Idle StateBusy state vs. Idle StateBusy state vs. Idle StateBusy state vs. Idle StateBusy state vs. Idle StateBusy state vs. Idle StateBusy state vs. Idle StateBusy state vs. Idle State

States:States: busybusy,, idleidle,, power downpower down

active stateactive state

busybusy →→ correspondingcorresponding idleidle
IdleIdle →→ power downpower down oror idleidle oror

correspondingcorresponding busybusy

χχbusybusy,, idleidle == µµ
χχ idleidle,, busybusy == ∞∞
χχ idleidle,, power downpower down == χχaa,, power downpower down

Busy1
Busy1

WaitWait

Idle1
Idle1

SleepSleep

µ1 ∞

Busy2
Busy2

Idle2
Idle2

µ2 ∞
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Generator Matrix of SPGenerator Matrix of SPGenerator Matrix of SPGenerator Matrix of SPGenerator Matrix of SPGenerator Matrix of SPGenerator Matrix of SPGenerator Matrix of SP

The parametric generator
matrix GSP(a) is a
function of a (action)

jiji
ssjss asa ,, ),()( χδσ ⋅= , si ≠ sj

∑−=
≠ ij

jiii ss
ssss aa )()( ,, σσ

Busy1
Busy1

WaitWait

Idle1
Idle1

SleepSleep

µ1 0

Busy2
Busy2

Idle2
Idle2

µ2

χi1,w0

δ(s, a) =

s is the destination state
of action a

1

0 otherwise

Single Service Queue (SSQ)Single Service Queue (SSQ)Single Service Queue (SSQ)Single Service Queue (SSQ)Single Service Queue (SSQ)Single Service Queue (SSQ)Single Service Queue (SSQ)Single Service Queue (SSQ)

q0
q0 qi

qi qi+1
qi+1 qQ

qQ

λ(r) λ(r)λ(r)

µ(s) µ(s)µ(s)

!! ShortcomingsShortcomings
"" Assumes all requests have the same priority, which is not trueAssumes all requests have the same priority, which is not true

in generalin general

"" Can only use one delay constraint, which is not flexible enoughCan only use one delay constraint, which is not flexible enough
to handle different types of requeststo handle different types of requests



13

Page 13

Priority Service Queue (PSQ)Priority Service Queue (PSQ)Priority Service Queue (PSQ)Priority Service Queue (PSQ)Priority Service Queue (PSQ)Priority Service Queue (PSQ)Priority Service Queue (PSQ)Priority Service Queue (PSQ)

SPSPSP IncomingIncoming
RequestRequest

LowLow
PriorityPriority

High PriorityHigh Priority

A simple priority queue in OSA simple priority queue in OS

Abstract modelAbstract model

LSQLSQ HSQHSQ
CorrelationCorrelation State representation:State representation:

((lqlqii,, hqhqii))

Correlation:Correlation: Request in LSQ can be serviced onlyRequest in LSQ can be serviced only
when there is no request in HSQwhen there is no request in HSQ

Service Requester (SR)Service Requester (SR)Service Requester (SR)Service Requester (SR)Service Requester (SR)Service Requester (SR)Service Requester (SR)Service Requester (SR)

riri rjrj

ji rr ,τ

ij rr ,τ

λl(rj)
λh(rj)

λl(ri)
λh(ri)
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System ModelSystem ModelSystem ModelSystem ModelSystem ModelSystem ModelSystem ModelSystem Model

!! The system (SYS) can be modeled as the compositionThe system (SYS) can be modeled as the composition
of the Markov processes of SR, SP and SQof the Markov processes of SR, SP and SQ
"" state set:state set: XX==SS××QQ××RR -- {invalid states where SP is busy and SQ{invalid states where SP is busy and SQ

is empty}is empty}

"" generator matrixgenerator matrix GGSYSSYS((aa) gives the state transition rates under) gives the state transition rates under
actionaction aa

"" Action set:Action set: AAxx for each statefor each state xx

Policy OptimizationPolicy OptimizationPolicy OptimizationPolicy OptimizationPolicy OptimizationPolicy OptimizationPolicy OptimizationPolicy Optimization

!! Linear ProgrammingLinear Programming
"" Optimal randomized policy (global optimal)Optimal randomized policy (global optimal)

!! NonNon--linear Programminglinear Programming
"" Optimal deterministic policyOptimal deterministic policy

!! Branch & Bound AlgorithmBranch & Bound Algorithm
"" Optimal deterministic policyOptimal deterministic policy

!! Policy IterationPolicy Iteration
"" Modification of conventional unconstrained optimizationModification of conventional unconstrained optimization

algorithmalgorithm

"" Only finds optimal deterministic policy with certain propertyOnly finds optimal deterministic policy with certain property
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Some Variables to Measure CTMDPSome Variables to Measure CTMDPSome Variables to Measure CTMDPSome Variables to Measure CTMDPSome Variables to Measure CTMDPSome Variables to Measure CTMDPSome Variables to Measure CTMDPSome Variables to Measure CTMDP

!! :: expectation of the time that the system will be in stateexpectation of the time that the system will be in state ii andand
aaii is chosenis chosen
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a
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Calculate Variables In Our SystemCalculate Variables In Our SystemCalculate Variables In Our SystemCalculate Variables In Our SystemCalculate Variables In Our SystemCalculate Variables In Our SystemCalculate Variables In Our SystemCalculate Variables In Our System
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LP Based OptimizationLP Based OptimizationLP Based OptimizationLP Based OptimizationLP Based OptimizationLP Based OptimizationLP Based OptimizationLP Based Optimization
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Property of
CTMDP

Performance
constraints

!! Only gives the randomized policyOnly gives the randomized policy

NLP Based optimizationNLP Based optimizationNLP Based optimizationNLP Based optimizationNLP Based optimizationNLP Based optimizationNLP Based optimizationNLP Based optimization

!! A NLP based optimization approach is used to findA NLP based optimization approach is used to find
the optimal deterministic policythe optimal deterministic policy
"" Deterministic policy: for each stateDeterministic policy: for each state ii, there is only one, there is only one aaii

thatthat

"" Not an ILP because may not be an integerNot an ILP because may not be an integer

"" ,, ΣΣiiAAii((AAii--1)/2 more constraint1)/2 more constraintaaaaxx a
i
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Motivation for BranchMotivation for BranchMotivation for BranchMotivation for BranchMotivation for BranchMotivation for BranchMotivation for BranchMotivation for Branch--------BoundBoundBoundBoundBoundBoundBoundBound

!! BranchBranch--andand--bound is used to solve the ILPbound is used to solve the ILP

!! Decision in each state has a significant impact onDecision in each state has a significant impact on
the system performance and power consumptionthe system performance and power consumption
"" Prune inefficient policies early onPrune inefficient policies early on

0,s

1,s

0,i

1,b

2,s 2,b

1,i

2,i

Decision Tree for BrandDecision Tree for BrandDecision Tree for BrandDecision Tree for BrandDecision Tree for BrandDecision Tree for BrandDecision Tree for BrandDecision Tree for Brand--------andandandandandandandand--------BoundBoundBoundBoundBoundBoundBoundBound
{a1, b1}
{a2, b2, c2}

{a3, b3}

{a1}
{a2, b2, c2}

{a3, b3}

{b1}
{a2, b2, c2}

{a3, b3}

{a1}
{a2}

{a3}

{a1}
{a2}

{a3, b3}

{a1}
{a2}

{b3}

Level 1

Level 2

Level 3

a1 b1

Predictor(pr): optimal
randomized policy of the
partial decision problem

Prune operator: pr ≤
best policy

Partial decision
problem
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Policy IterationPolicy IterationPolicy IterationPolicy IterationPolicy IterationPolicy IterationPolicy IterationPolicy Iteration

!! Policy iteration: dynamicPolicy iteration: dynamic
programmingprogramming
"" Unconstraint optimizationUnconstraint optimization

∑ ∑
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done

Random π

For each state i, determine the action ai that
minimizes ci

π, calculate new σi,j and ri.

New policy = old
policy

YES

NO

Calculate gj
π

and cj
π

Modified Policy IterationModified Policy IterationModified Policy IterationModified Policy IterationModified Policy IterationModified Policy IterationModified Policy IterationModified Policy Iteration

Output optimal
policy

System Model

If the delay is larger than
constraint then increase
w, otherwise decrease w

Is delay of the policy
within certain range of
the delay constraint?

YES

NO

Policy Iteration
Algorithm

joint costx = c_powx+w⋅c_delayx

Satisfy the constraint by changing
the weight of c_con in joint cost
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Policy Iteration Based OptimizationPolicy Iteration Based OptimizationPolicy Iteration Based OptimizationPolicy Iteration Based OptimizationPolicy Iteration Based OptimizationPolicy Iteration Based OptimizationPolicy Iteration Based OptimizationPolicy Iteration Based Optimization

!! Convex policy: (Convex policy: (ppii,, ddii))
"" ∀∀ jj,, ppjj << ppii ⇒⇒ ddjj >> ddii

"" ∀∀ j, lj, l,, ppjj >> ppii >> ppll ⇒⇒
((ddii−−ddjj))//((ppjj−−ppii)<()<(ddll−−ddii))//((ppii−−ppll))

Delay

Power

a

b c

d
e

!! Proposition: The output of the modified policyProposition: The output of the modified policy
iteration algorithm is an optimal convex policyiteration algorithm is an optimal convex policy
which satisfies the performance constraintwhich satisfies the performance constraint

!! System modelSystem model
"" A SP with three power mode: active, sleep, standbyA SP with three power mode: active, sleep, standby

"" High power consumption when the SP is busyHigh power consumption when the SP is busy

"" When SP is active, average service time is 8msWhen SP is active, average service time is 8ms

"" Two different distribution for SP transition time (TD)Two different distribution for SP transition time (TD)
## Exponential distribution (Exp) & uniform distribution (Exponential distribution (Exp) & uniform distribution (UniUni))

"" A SQ model with length 20A SQ model with length 20

Experimental Results: Simple DPM Experimental Results: Simple DPM Experimental Results: Simple DPM Experimental Results: Simple DPM Experimental Results: Simple DPM Experimental Results: Simple DPM Experimental Results: Simple DPM Experimental Results: Simple DPM 
System With SSQSystem With SSQSystem With SSQSystem With SSQSystem With SSQSystem With SSQSystem With SSQSystem With SSQ

stdbyState sleep idle busy

P (W) 0.13 0.35 0.95 2.15

1/µ (s) 0 0 0 0.008
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Input TraceInput TraceInput TraceInput TraceInput TraceInput TraceInput TraceInput Trace
!! SR has one requestor generation stateSR has one requestor generation state

"" Average requestor interAverage requestor inter--arrival time is 0.72 secarrival time is 0.72 sec
"" Five different distribution (RD)Five different distribution (RD)

## Exponential distribution (Exp)Exponential distribution (Exp)
## Combination of exponential distribution & Pareto distributionCombination of exponential distribution & Pareto distribution

(Exp&Par)(Exp&Par)
# Pareto: f(t)=1-at-b

# Has longer idle time than exponential distribution

## Combination of two exponential distribution (Exp & Exp)Combination of two exponential distribution (Exp & Exp)
## Uniform distribution (Uniform distribution (UniUni))
## Normal distribution (Nor)Normal distribution (Nor)
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Experimental PoliciesExperimental PoliciesExperimental PoliciesExperimental PoliciesExperimental PoliciesExperimental PoliciesExperimental PoliciesExperimental Policies
!! Always on policyAlways on policy

"" Reasonable choice for system with high switching penaltyReasonable choice for system with high switching penalty

!! TimeTime--out policyout policy
"" Three SP power modes:Three SP power modes: busy, idle, sleepbusy, idle, sleep

"" Vary timeVary time--out period to obtain a set of performanceout period to obtain a set of performance--powerpower
trade offstrade offs

!! NN--policypolicy
"" Three SP power modes:Three SP power modes: busy, idle, sleepbusy, idle, sleep

"" turn on the server when there areturn on the server when there are NN requests waiting andrequests waiting and
turn off the server when there are no requeststurn off the server when there are no requests

"" Optimal deterministic policy if the system has only twoOptimal deterministic policy if the system has only two
statesstates

"" Vary the number N to obtain a set of performanceVary the number N to obtain a set of performance--powerpower
trade offstrade offs
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Experimental Policies (cont.)Experimental Policies (cont.)Experimental Policies (cont.)Experimental Policies (cont.)Experimental Policies (cont.)Experimental Policies (cont.)Experimental Policies (cont.)Experimental Policies (cont.)
!! Theoretical CTMDP policyTheoretical CTMDP policy

"" Three SP power modesThree SP power modes

"" Four SP power modesFour SP power modes

"" Vary performance constraint to obtainVary performance constraint to obtain
a set of performancea set of performance--power trade offspower trade offs

!! Modified CTMDP policy: CTMDPModified CTMDP policy: CTMDP--
PollPoll
"" The PM will reThe PM will re--issue the command ifissue the command if

the system has been idle for a longthe system has been idle for a long
time, so that the probability for turningtime, so that the probability for turning
off is increasedoff is increased

"" Three SP power modes:Three SP power modes: active, idle,active, idle,
sleepsleep

"" Vary performance constraint to obtainVary performance constraint to obtain
a set of performancea set of performance--power trade offspower trade offs

Send command:
(pon = 0.6 poff = 0.4)

SP has been
idle for 2sec

Make new decision

No

Yes

Experimental Results (1)Experimental Results (1)Experimental Results (1)Experimental Results (1)Experimental Results (1)Experimental Results (1)Experimental Results (1)Experimental Results (1)

50000

100000

150000

200000

250000

300000

0.01 0.1 1 10Performance

P
o

w
er

Always On

Greedy

N-Policy

Time Out

3CTMDP

4CTMDP

CTMDP-POLL

Exp. TD, Exp RDExp. TD, Exp RD



22

Page 22

Experimental Results (2)Experimental Results (2)Experimental Results (2)Experimental Results (2)Experimental Results (2)Experimental Results (2)Experimental Results (2)Experimental Results (2)
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Experimental Results (4)Experimental Results (4)Experimental Results (4)Experimental Results (4)Experimental Results (4)Experimental Results (4)Experimental Results (4)Experimental Results (4)
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Experimental Results (5)Experimental Results (5)Experimental Results (5)Experimental Results (5)Experimental Results (5)Experimental Results (5)Experimental Results (5)Experimental Results (5)
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Experimental Results (6)Experimental Results (6)Experimental Results (6)Experimental Results (6)Experimental Results (6)Experimental Results (6)Experimental Results (6)Experimental Results (6)
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Experimental Results (7)Experimental Results (7)Experimental Results (7)Experimental Results (7)Experimental Results (7)Experimental Results (7)Experimental Results (7)Experimental Results (7)
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Experimental Results (8)Experimental Results (8)Experimental Results (8)Experimental Results (8)Experimental Results (8)Experimental Results (8)Experimental Results (8)Experimental Results (8)

50 0 00

100 0 00

150 0 00

2 00 0 00

2 50 0 00

3 00 0 00

0 .01 0.1 1 10
Performance

P
o

w
e
r

Always On

Greedy

N-Policy

Time Out

3CTMDP

4CTMDP

CTMDP-POLL

Uni. TD, Uni. RDUni. TD, Uni. RD

Experimental Results (9)Experimental Results (9)Experimental Results (9)Experimental Results (9)Experimental Results (9)Experimental Results (9)Experimental Results (9)Experimental Results (9)
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Experimental Results (10)Experimental Results (10)Experimental Results (10)Experimental Results (10)Experimental Results (10)Experimental Results (10)Experimental Results (10)Experimental Results (10)
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AnalysisAnalysisAnalysisAnalysisAnalysisAnalysisAnalysisAnalysis

!! The stochastic policies out perform the heuristicThe stochastic policies out perform the heuristic
policiespolicies

!! The stochastic policies can provide power delayThe stochastic policies can provide power delay
trade offtrade off

!! Three state CTMDP policy is not efficient with inputThree state CTMDP policy is not efficient with input
sequence with Exp & Pareto intersequence with Exp & Pareto inter--arrival timearrival time

!! CTMDPCTMDP--poll policy solves the above problempoll policy solves the above problem

!! Four state CTMDP is robust in different TD, RDFour state CTMDP is robust in different TD, RD
distributiondistribution
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Experimental Results: Simple DPM Experimental Results: Simple DPM Experimental Results: Simple DPM Experimental Results: Simple DPM Experimental Results: Simple DPM Experimental Results: Simple DPM Experimental Results: Simple DPM Experimental Results: Simple DPM 
Systems With PSQSystems With PSQSystems With PSQSystems With PSQSystems With PSQSystems With PSQSystems With PSQSystems With PSQ

!! System modelSystem model
"" A SP with three power modeA SP with three power mode

"" A SR model with two statesA SR model with two states rr11 andand rr22, G, GSRSR((rr11,,rr22)=1/200,)=1/200,
GGSRSR((rr22,,rr11)=1/400,)=1/400, λλ ll((rr11)=1/30,)=1/30, λλhh((rr11)=1/50,)=1/50, λλ ll((rr22)=1/60,)=1/60, λλhh((rr22)=1/90)=1/90

"" A SQ model with a LSQ of length 3 and a HSQ of length 2A SQ model with a LSQ of length 3 and a HSQ of length 2

!! Two different workload traceTwo different workload trace
"" Exactly same as theoretical model (exponential distribution)Exactly same as theoretical model (exponential distribution)

"" Uniform distribution of request interUniform distribution of request inter--arrival time (instead ofarrival time (instead of
exponential distribution)exponential distribution)

Results for Trace 1Results for Trace 1Results for Trace 1Results for Trace 1Results for Trace 1Results for Trace 1Results for Trace 1Results for Trace 1
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Power Improvement of Our approach vs. Heuristics

TimeoutTimeoutTimeoutTimeout
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TimeoutTimeoutTimeoutTimeout
Tout=40Tout=40Tout=40Tout=40
TimeoutTimeoutTimeoutTimeout
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Results for Trace 2Results for Trace 2Results for Trace 2Results for Trace 2Results for Trace 2Results for Trace 2Results for Trace 2Results for Trace 2
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Generalized Stochastic Petri Nets For Generalized Stochastic Petri Nets For Generalized Stochastic Petri Nets For Generalized Stochastic Petri Nets For Generalized Stochastic Petri Nets For Generalized Stochastic Petri Nets For Generalized Stochastic Petri Nets For Generalized Stochastic Petri Nets For 
Complex DPM SystemComplex DPM SystemComplex DPM SystemComplex DPM SystemComplex DPM SystemComplex DPM SystemComplex DPM SystemComplex DPM System

!! CTMDP is not efficient in modeling complex systemsCTMDP is not efficient in modeling complex systems
"" Need to construct system model manuallyNeed to construct system model manually

!! Generalized Stochastic Petri Nets (GSPN)Generalized Stochastic Petri Nets (GSPN)
"" Graphical tool for the formal description of complex systemGraphical tool for the formal description of complex system

"" Widely used in complex system performance analysisWidely used in complex system performance analysis

"" Construction is straightforward from system behaviorConstruction is straightforward from system behavior

"" Captures synchronization,Captures synchronization, mutual exclusion and conflictmutual exclusion and conflict
information easilyinformation easily

"" GSPN can be transformed to CTMPGSPN can be transformed to CTMP

!! Controllable Generalized Stochastic Petri Nets (CGSPN)Controllable Generalized Stochastic Petri Nets (CGSPN)
"" CGSPN can be transformed to CTMDPCGSPN can be transformed to CTMDP

System
Behavior CGSPN CTMDP Policy
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Outline of Part IIIOutline of Part IIIOutline of Part IIIOutline of Part IIIOutline of Part IIIOutline of Part IIIOutline of Part IIIOutline of Part III

!! GSPN backgroundGSPN background

!! Finding the embedded CTMP of a GSPNFinding the embedded CTMP of a GSPN

!! Introducing Controllable GSPNIntroducing Controllable GSPN

!! Complex power managed system modelingComplex power managed system modeling
"" Component modelingComponent modeling

"" Entire system modelingEntire system modeling

GSPN PrimitivesGSPN PrimitivesGSPN PrimitivesGSPN PrimitivesGSPN PrimitivesGSPN PrimitivesGSPN PrimitivesGSPN Primitives
!! Place: condition or situationPlace: condition or situation

!! TokenToken
"" MarkingMarking mm((pp): #of tokens in): #of tokens in pp

"" System markingSystem marking mm: system state: system state

!! Transition: eventsTransition: events
"" Timed transition (exponentialTimed transition (exponential

distribution)distribution) RR((tt))

"" Immediate transitionImmediate transition

!! Input arc: I(Input arc: I(tt,, pp))
"" tt∈∈ pp•• ,, pp∈∈ •• tt

!! Output arc: O(Output arc: O(tt,, pp))
"" tt∈∈ ••pp,, pp∈∈ tt••

!! Inhibitor arc: H(Inhibitor arc: H(tt,, pp))
"" tt∈∈ οοp, pp, p∈∈ οοtt

mm((pponon)=0,)=0, mm((ppoffoff)=0,)=0, mm((ppqueuequeue)=0)=0

mm = [0, 0, 1]= [0, 0, 1]

Poff

tswitch_off

tswitch_on

Pon Pqueue

tprocess
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!! tt is enabled in markingis enabled in marking mm iffiff
"" ∀∀ pp ∈∈ •• tt,, mm((pp)) ≥≥ II((tt,, pp) and) and ∀∀ pp ∈∈ ○○tt,, mm((pp) <) < HH((tt,, pp))

!! Firing ofFiring of tt
"" RemovesRemoves II((tt,, pp) tokens from) tokens from •• tt

"" DepositsDeposits OO((tt,, pp) tokens into) tokens into tt••

GSPN Enabling and Firing RulesGSPN Enabling and Firing RulesGSPN Enabling and Firing RulesGSPN Enabling and Firing RulesGSPN Enabling and Firing RulesGSPN Enabling and Firing RulesGSPN Enabling and Firing RulesGSPN Enabling and Firing Rules

Poff

tswitch_off

tswitch_on

Pon Pqueue

tprocess

pon poff pqueue

0 1 1
1 0 1
1 0 0
0 1 0

GSPN Enabling and Firing Rules (cont.)GSPN Enabling and Firing Rules (cont.)GSPN Enabling and Firing Rules (cont.)GSPN Enabling and Firing Rules (cont.)GSPN Enabling and Firing Rules (cont.)GSPN Enabling and Firing Rules (cont.)GSPN Enabling and Firing Rules (cont.)GSPN Enabling and Firing Rules (cont.)

!! A timer is associated with timed transitionA timer is associated with timed transition tt
"" When t is enabled, timer is set to a random value andWhen t is enabled, timer is set to a random value and

starts counting downstarts counting down

"" When timer reaches 0,When timer reaches 0, tt fires and resets the timerfires and resets the timer

!! Immediate transition always has higher priority thanImmediate transition always has higher priority than
timed transitiontimed transition
"" tangible marking: no immediate transition is enabledtangible marking: no immediate transition is enabled

"" vanishing marking: at least one immediate transition isvanishing marking: at least one immediate transition is
enabledenabled

R(t)
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Conflict TransitionsConflict TransitionsConflict TransitionsConflict TransitionsConflict TransitionsConflict TransitionsConflict TransitionsConflict Transitions
!! Effective conflictEffective conflict

"" Firing of one transition will disable another enabledFiring of one transition will disable another enabled
transitiontransition

!! Free choice conflictFree choice conflict
"" Effective conflict transitions, which are always enabled atEffective conflict transitions, which are always enabled at

the same timethe same time

p1 P2 P3

P4
P5

t1 t2

Effective conflictEffective conflict Free choice conflictFree choice conflict

P2

P4 P5

t1 t2

Resolving ConflictResolving ConflictResolving ConflictResolving ConflictResolving ConflictResolving ConflictResolving ConflictResolving Conflict

!! Conflict timed transitionsConflict timed transitions
"" Transition with the shortest associated time fires firstTransition with the shortest associated time fires first

!! Conflict immediate transitionsConflict immediate transitions
"" Transition fires under randomized choiceTransition fires under randomized choice

"" Each conflict immediate transition is associated with aEach conflict immediate transition is associated with a
weightweight wwii

"" The probability of firing an immediate transitionThe probability of firing an immediate transition ttkk isis

∑
=

m

m

inenabledis

)|(

jt
j

k
k w

w
tP
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SPN and CTMPSPN and CTMPSPN and CTMPSPN and CTMPSPN and CTMPSPN and CTMPSPN and CTMPSPN and CTMP

!! SPN is GSNP without immediate transitionsSPN is GSNP without immediate transitions

!! SPN with a finite reachability set is isomorphic to aSPN with a finite reachability set is isomorphic to a
CTMPCTMP
"" CTMP states space: the reachable markings of SPNCTMP states space: the reachable markings of SPN

"" : sum of the rate of transitions which moves SPN fro: sum of the rate of transitions which moves SPN fromm
mmii toto mmjj

ji mm ,σ

SPNSPN CTMPCTMP

ReachableReachable
MarkingsMarkings

TransitionTransition
Rate:Rate: mmii→→mmjj

GSPN and CTMPGSPN and CTMPGSPN and CTMPGSPN and CTMPGSPN and CTMPGSPN and CTMPGSPN and CTMPGSPN and CTMP
!! For each GSPN with finite reachability set, there is aFor each GSPN with finite reachability set, there is a

unique embedded CTMPunique embedded CTMP
"" State space: tangible markings of GSPNState space: tangible markings of GSPN

"" Steady state probability and state transition probability are thSteady state probability and state transition probability are thee
same as that of the tangible markings in the GSPNsame as that of the tangible markings in the GSPN

GSPNGSPN CTMPCTMP

ReachableReachable
MarkingsMarkings

Transition Rate:Transition Rate:
mmii→→vanishing markingsvanishing markings→…→→…→mmjj

TangibleTangible
MarkingsMarkings

Too many
vanishing markings

Indirect
transitions
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Convert GSPN to SPNConvert GSPN to SPNConvert GSPN to SPNConvert GSPN to SPNConvert GSPN to SPNConvert GSPN to SPNConvert GSPN to SPNConvert GSPN to SPN

!! Eliminate all of the vanishing markings by removingEliminate all of the vanishing markings by removing
immediate transitions and vanishing places from theimmediate transitions and vanishing places from the
PN modelPN model

CTMPSPNGSPN

GSPN With CostGSPN With CostGSPN With CostGSPN With CostGSPN With CostGSPN With CostGSPN With CostGSPN With Cost
!! Impulse cost:Impulse cost:

"" Associated with transitionsAssociated with transitions

!! Rate costRate cost
"" Associated with placesAssociated with places

!! Can be converted to CTMPCan be converted to CTMP
with costwith cost
"" Rate cost:Rate cost:

"" Transition cost:Transition cost:

c(tswitch_on)=2J: Energy for turn on

c(tswitch_off)=0.1J: Energy for turn
off

c(pon)=m(Pon)⋅2.5W: “on” power

c(poff)=m(poff)⋅0.1W: “off” power
c(pqueue)=m(pqueue): #of waiting
requests in queue

∑=
∈ Pp

pcr )(m

∑=
′>

′
mm

mm
tt

c(t)r
[:

,

Poff

tswitch_off

tswitch_on

Pon Pqueue

tprocess
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Controllable GSPNControllable GSPNControllable GSPNControllable GSPNControllable GSPNControllable GSPNControllable GSPNControllable GSPN
!! A controllable GSPN is a GSPN where the weights ofA controllable GSPN is a GSPN where the weights of

all or part of freeall or part of free--choicechoice--conflict immediate transitionsconflict immediate transitions
can be controlled by outside commandscan be controlled by outside commands
"" Corresponds to a controllable CTMPCorresponds to a controllable CTMP

"" Need to find the set of weights that minimizes the costNeed to find the set of weights that minimizes the cost

p

p1 pn

t1 tn

t, µ

p2 pn-1

t2 tn-1

pnp1

t′1 t′n

p2 pn-1

t′2 t′n-1

)(, tRia =′mmσ (t: m→m)

Example of Controllable GSPNExample of Controllable GSPNExample of Controllable GSPNExample of Controllable GSPNExample of Controllable GSPNExample of Controllable GSPNExample of Controllable GSPNExample of Controllable GSPN

twork_B

pswitch_A

pdecision_A

pswitch_B

pwork_A

pwork_B

pqueue_A

pqueue_B

pdecision_B

t1

t2 t3

t4

tswitch_A

tswitch_B

twork_A
treq_A

treq_B
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Unit Server System Modeling: Basic Unit Server System Modeling: Basic Unit Server System Modeling: Basic Unit Server System Modeling: Basic Unit Server System Modeling: Basic Unit Server System Modeling: Basic Unit Server System Modeling: Basic Unit Server System Modeling: Basic 
ElementsElementsElementsElementsElementsElementsElementsElements

!! The CGSPN model containsThe CGSPN model contains
"" Places set: {Places set: {pp[[powerpower]]__[[servserv]]__[[statusstatus]]}}

## Models SP statusModels SP status

## One for each different power mode, different service speed orOne for each different power mode, different service speed or
different SP state (busy, idle or switching)different SP state (busy, idle or switching)

"" PlacesPlaces ppSQSQ

## Models service queueModels service queue

"" Timed transitions: {Timed transitions: {tt[[powerpower]]__[[servserv]]_work_work}}
## Models service providing procedureModels service providing procedure

"" Immediate transitions {Immediate transitions {tt[[powerpower]_[]_[servserv]_]_go_workgo_work}}
## Synchronizes SP and SQSynchronizes SP and SQ

"" Timed transitions {Timed transitions {tt[[SPSP]]__[[powerpower]]__[[servserv]]__[[switchswitch]]}}
## Models the activity that the SP switches from one power mode toModels the activity that the SP switches from one power mode to

anotheranother

Unit Server System Modeling: Power Unit Server System Modeling: Power Unit Server System Modeling: Power Unit Server System Modeling: Power Unit Server System Modeling: Power Unit Server System Modeling: Power Unit Server System Modeling: Power Unit Server System Modeling: Power 
Management ElementsManagement ElementsManagement ElementsManagement ElementsManagement ElementsManagement ElementsManagement ElementsManagement Elements

!! To model power managementTo model power management
procedure, the GSPN must contains:procedure, the GSPN must contains:

"" pp[[powerpower]]__[[servserv]]_decision_decision,,
## Vanishing placeVanishing place

## Models the short period when SP isModels the short period when SP is
receiving commandreceiving command

"" pp[[powerpower]]__[[servserv]]_interrupt_interrupt
## Vanishing placeVanishing place

## mm((ppinterruptinterrupt)=1, there is interrupt)=1, there is interrupt

## M(M(ppinterruptinterrupt))=0, no interrupt=0, no interrupt

## ••ppinterruptinterrupt: sensitivity events: sensitivity events

"" tt[power]_[[power]_[servserv]_[status]]_[status]
## Controllable immediate transitionsControllable immediate transitions

## Models the switching command thatModels the switching command that
will be issued by PMwill be issued by PM

Read State
Info & make

decision

Stay in
sleep

Read State
Info & make

decision

Read State
Info & make

decision

Switching
to sleep

Switching
to active

reach
new state

Stay in
sleeping

outside
interrupt

outside
interrupt

Go to
active

reach
new state
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Example of the Unit Server SystemExample of the Unit Server SystemExample of the Unit Server SystemExample of the Unit Server SystemExample of the Unit Server SystemExample of the Unit Server SystemExample of the Unit Server SystemExample of the Unit Server System

ts_ignore

ta_ignore

pa_SQ
pa_work

pa_idle

pa_decision

ps_decision

ps_interr

ps_go2a

ps_idle

ta_work

ts_decision

ta_go_work

pa_go2s

ta_go2s

ts_interrupt

ta_interr
pa_interr

ta_1

ta_2

ts_1

ts_2

p_mode

active
sleep

status
Idle, go2s

Idle, go2a

Power mode: active (a), sleep (s)
Single service type

Controllable transitions: {ta_1, ta_2}, {ts_1, ts_2}

PM recheck the system state every time reaching a new state

Request Generating SystemRequest Generating SystemRequest Generating SystemRequest Generating SystemRequest Generating SystemRequest Generating SystemRequest Generating SystemRequest Generating System

!! The RGS generates different types of requestsThe RGS generates different types of requests
"" Request can be serviced by one or more Service ProviderRequest can be serviced by one or more Service Provider

!! The request generation takes some amount of timeThe request generation takes some amount of time
"" Request interRequest inter--arrival timearrival time

!! The temporal correlation between different types ofThe temporal correlation between different types of
requests can be modeledrequests can be modeled
"" probprob((jj|| ii) is known) is known

!! The request generation is stopped if SQ is fullThe request generation is stopped if SQ is full
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Example of Request Generating System Example of Request Generating System Example of Request Generating System Example of Request Generating System Example of Request Generating System Example of Request Generating System Example of Request Generating System Example of Request Generating System 
ModelingModelingModelingModelingModelingModelingModelingModeling

Type A → Server A

Type B → Server B

Type AB → Server
A or Server B

pgen(A)

tgen(A)

tA, A

pswitch(B)

pswitch(A)

tA, BtA, AB

tgen(B)

pgen(B)pgen(AB)

tgen(AB)

pswitch(AB)

tB, AB

tB, A

tB, B

tAB, B

tAB, A

tAB, AB

)5,()1),(( _21)( SQAgenAt pFApFD
gen

∧=

)3,()1),(( _21)( SQBgenBt pFBpFD
gen

∧=

))5,()3,(()1),(( _2_21)( SQASQBgenABt pFpFABpFD
gen

∨∧=

Two SP’s: A, BTwo SP’s: A, B
SQSQAA capacity = 5capacity = 5
SQSQBB capacity = 3capacity = 3

Entire SystemEntire SystemEntire SystemEntire SystemEntire SystemEntire SystemEntire SystemEntire System
!! Connect unit server and requestor generator models withConnect unit server and requestor generator models with

input/output/inhibitor arcsinput/output/inhibitor arcs
"" If typeIf type ii request can only be serviced by one SP:request can only be serviced by one SP: ““aa““ in powerin power

modemode ““pp”” with service typewith service type ““servserv””
## ConnectConnect ttgengen((ii) to) to ppa_p_a_p_servserv_SQ_SQ

"" If typeIf type ii request can be serviced by multiple SPrequest can be serviced by multiple SP’’ss
## A placeA place ppdecisiondecision((ii))

## A set of immediate transitionsA set of immediate transitions ttSPSP((ii))

## ttSPSP((ii) may be controllable to model the request dispatcher) may be controllable to model the request dispatcher

## •• ttjj((ii) =) = ppdecisiondecision((ii),), ttjj((ii))•
• == pp[SP]_[SP]_[[powerpower]]__[[servserv]]__SQSQ,, ••ppdecisiondecision((ii) =) = ttgengen((ii))

"" Connect sensitivity transitions to pConnect sensitivity transitions to p[sp]_[power]_[[sp]_[power]_[servserv]_interrupt]_interrupt

"" Captures the interaction between the server and the requestCaptures the interaction between the server and the request
generatorgenerator
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Example ofExample ofExample ofExample ofExample ofExample ofExample ofExample of MutiMutiMutiMutiMutiMutiMutiMuti--------server System server System server System server System server System server System server System server System 
ModelingModelingModelingModelingModelingModelingModelingModeling

tgen(A)

tgen(AB)

tgen(B)

RGSRGS USSUSSAA

USSUSSBB

pA_a_SQ

pB_a_SQ

tB_a_switch2s

tB_s_switch2a

pA_a_interrupt

pA_s_interrupt

pB_s_interrupt

Pdecision(AB)
tA(AB)

tB(AB)

!! SPA is sensitive to the power mode of SPBSPA is sensitive to the power mode of SPB

!! SPB is not sensitive to the power mode of SPASPB is not sensitive to the power mode of SPA

!! Both are sensitive to the incoming of requestBoth are sensitive to the incoming of request

NonNonNonNonNonNonNonNon--------exponential Distributionexponential Distributionexponential Distributionexponential Distributionexponential Distributionexponential Distributionexponential Distributionexponential Distribution

!! The GSPN model requires that each timed transitionThe GSPN model requires that each timed transition
follows an exponential distributionfollows an exponential distribution

!! Approximate the nonApproximate the non--exponential distribution usingexponential distribution using
thethe stage methodstage method

g(t) G(s)
L(s)

f(t) F(s)
L(s)

h(t) H(s)
L(s)

f hg

G(s)=F(s) ⋅ H(s)

αααα1

αααα2

g
f

h

G(s)=F(s) + H(s)

∑
= =

+ +
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…

αααα1

ββββ1

αααα2

ββββ2

αααα3

ββββ3 ββββr

ααααr

α i + βi = 1, 1 ≤ i ≤r
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Real Implementation of Stage MethodReal Implementation of Stage MethodReal Implementation of Stage MethodReal Implementation of Stage MethodReal Implementation of Stage MethodReal Implementation of Stage MethodReal Implementation of Stage MethodReal Implementation of Stage Method

!! In real implementation, r = 3In real implementation, r = 3

!! Use curve fitting to determineUse curve fitting to determine αα ii andand µµii,, 11 ≤≤ ii ≤≤ rr

r=1

r=2

r=3

Real distribution

GSPN Model for NonGSPN Model for NonGSPN Model for NonGSPN Model for NonGSPN Model for NonGSPN Model for NonGSPN Model for NonGSPN Model for Non--------exponential timed exponential timed exponential timed exponential timed exponential timed exponential timed exponential timed exponential timed 
activityactivityactivityactivityactivityactivityactivityactivity

!! We use the stage method to approximate the nonWe use the stage method to approximate the non--
exponential interexponential inter--arrival time of requests witharrival time of requests with rr = 3= 3

Stage_1

Stage_2

Stage_3

µ1 1-α1

α1

µ2 1-α2

α2

µ3

P1

P2
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Experimental Results: Complex DPM Experimental Results: Complex DPM Experimental Results: Complex DPM Experimental Results: Complex DPM Experimental Results: Complex DPM Experimental Results: Complex DPM Experimental Results: Complex DPM Experimental Results: Complex DPM 
SystemSystemSystemSystemSystemSystemSystemSystem

!! System modelSystem model
"" Two SP’s (SPTwo SP’s (SPAA and SPand SPBB) has the same functionality) has the same functionality

"" SPASPA
## Average service time: 5msAverage service time: 5ms

## pactivepactive=2.3w,=2.3w, ppwaitingwaiting=0.8w,=0.8w, ppsleepingsleeping=0.1w=0.1w

"" SPSPBB

## Average service time: 3msAverage service time: 3ms

## ppactiveactive=4.0w,=4.0w, ppwaitingwaiting=0.8w,=0.8w, ppsleepingsleeping=0.1w=0.1w

"" TwoTwo SQ’sSQ’s each with capacity twoeach with capacity two

"" Request can be serviced by both SP’sRequest can be serviced by both SP’s

"" The switching time and energy for both SP’sThe switching time and energy for both SP’s
are also knownare also known

Comparison Results (I)Comparison Results (I)Comparison Results (I)Comparison Results (I)Comparison Results (I)Comparison Results (I)Comparison Results (I)Comparison Results (I)

!! Base case:Base case:
"" Greedy DPM policy for the serversGreedy DPM policy for the servers

"" Randomized policy (Randomized policy (pApA,, pBpB) for the dispatcher) for the dispatcher

!! More than 20% power savingMore than 20% power saving
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Power Improvement of Our approach vs. Heuristics
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Comparison Results (II)Comparison Results (II)Comparison Results (II)Comparison Results (II)Comparison Results (II)Comparison Results (II)Comparison Results (II)Comparison Results (II)

!! Base case:Base case:
"" Timeout DPM policy for the serversTimeout DPM policy for the servers

"" Randomized policy (Randomized policy (pApA,, pBpB) for the dispatcher) for the dispatcher

!! More than 13% power savingMore than 13% power saving
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Power Improvement of Our approach vs. Heuristics

Comparison Results (III)Comparison Results (III)Comparison Results (III)Comparison Results (III)Comparison Results (III)Comparison Results (III)Comparison Results (III)Comparison Results (III)

!! Base case:Base case:
"" Local optimal DPM for the serversLocal optimal DPM for the servers

"" Randomized policy (Randomized policy (pApA,, pBpB) for the dispatcher) for the dispatcher

!! More than 20% power savingMore than 20% power saving
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Power Improvement of Our approach vs. Heuristics
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ConclusionsConclusionsConclusionsConclusionsConclusionsConclusionsConclusionsConclusions
!! We introduced a new and complete model for simpleWe introduced a new and complete model for simple

and complex power managed systemsand complex power managed systems

!! Policy optimization techniques based on the proposedPolicy optimization techniques based on the proposed
system model were presentedsystem model were presented

!! The proposed dynamic power management methodsThe proposed dynamic power management methods
outperform the existing approachesoutperform the existing approaches


