Model Order Reduction of Large Circuits Using Balanced Truncation Via the Arnoldi Method

Payam Rabiei, Massoud Pedram
Department of EE - Systems
University of Southern California Los Angeles, California

Outline

- Introduction
- State Space Form and System Norm
- Model Reduction Based on Balanced Truncation
- Numerical Methods
- Experimental Results
- Conclusion

Introduction

- In high-frequency range, circuits should be modeled as distributed elements
\square Extracted circuits are huge and cannot be simulated without order reduction
- AWE is a method for order reduction based on Pade approximation of the system transfer function
- Improvements of AWE include RICE, PVL and PRIMA (guarantees passivity)

Overview

- Model order reduction has extensively been studied in the control engineering
- Both frequency- and time-domain model reduction techniques have been proposed
- An effective method is based on the balanced realization of the system
- Guaranteed stability
- Bound on the error for the reduced system
- Provably optimal solution

State Space Form

Any linear, time-invariant circuit can be written in standard state space form as :

$$
\begin{aligned}
& \dot{\vec{x}}=A \vec{x}+B \vec{u} \\
& \vec{y}=C \vec{x}+D \vec{u}
\end{aligned}
$$

\square Given the state space matrix (A,B,C,D), the transfer function of the system is:

$$
G(s)=C(s I-A)^{-1} B+D
$$

Without loss of generality, assume $\mathrm{D}=0$

Singular Value Decomposition

- Any $l \times m$ matrix \boldsymbol{A} may be factorized into a singular value decomposition $A=U \Sigma V^{H}$ where the $l \times l$ matrix \boldsymbol{U} and the $m \times m$ matrix V are unitary and the $l \times m$ matrix Σ contains a diagonal matrix Σ_{1} of real, non-negative singular values σ_{i} arranged as [$\Sigma_{1} 0$] if $l<m$, as Σ_{1} if $l=m$ and as [$\left.\Sigma_{1} 0\right]^{\top}$ otherwise.
Note that $\Sigma_{1}=\operatorname{diag}\left\{\sigma_{1}, \sigma_{2}, \cdots, \sigma_{k}\right\} ; k=\min (l, m)$ and $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{k}$ the singular values $\sigma_{\mathbf{i}}$ are positive square roots of the k largest eigenvalues of both $A A^{H}$ and $A^{H} A$. Matrices \boldsymbol{U} and V are unit eigen-vectors of $A A^{H}$ and $A^{H} A$.

Balancing the System

- The idea is to find a state vector realization of the system that results in equal coupling of energy from the inputs to states and from states to the outputs
- The Reachability and Observibility Gramians are measures of such energy couplings:

$$
W_{r}=\int_{0}^{\infty} e^{A \tau} B B^{T} e^{A^{T} \tau} d \tau \quad W_{o}=\int_{0}^{\infty} e^{A^{T} \tau} C^{T} C e^{A \tau} d \tau
$$

- The Gramians are obtained by solving the Lyapunov equations

Lyapunov Equations

- The Lyapunov equations can be stated as follows:

$$
\begin{aligned}
& A W_{r}+W_{r} A^{T}+B B^{T}=0 \\
& A^{T} W_{o}+W_{o} A+C^{T} C=0
\end{aligned}
$$

- The Hankel singular values and the Hankel norm are then calculated as:

$$
\begin{gathered}
\sigma_{i}(G(s))=\sqrt{\lambda_{i}\left(W_{r} W_{o}\right)}, i=1,2, \cdots, n \quad \sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0 \\
\|G(s)\|_{H}=\max \sigma_{i}=\sigma_{1}
\end{gathered}
$$

Time-Domain View of Hankel Norm

- It can be shown that Hankel norm is also given by:

$$
\|G(s)\|_{H}=\max _{\tilde{u}(t)} \frac{\sqrt{\int_{0}\|\vec{y}(t)\|_{2}^{2}}}{\sqrt{\int_{-\infty}^{0}\|(t)\|_{2}^{2}}}
$$

- Hankel norm can be interpreted as a kind of induced norm from past inputs to future outputs

Balanced Realization (BR)

- By applying a transformation \mathbf{T} to the system, we can change W_{r} and W_{o} as follows:

$$
\hat{W}_{r}=T^{-1} W_{r} T^{-T} \quad \hat{W}_{o}=T^{T} W_{o} T
$$

- It can be shown that for any system, there is a transformation which makes

$$
\hat{W}_{r}=\hat{W}_{o}
$$

- Using such a transformation, the new system is called a balanced realization

Reduced System

- To reduce order of the system, we simply ignore states with small Hankel singular values:

$$
A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right], B=\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right], C=\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right] \quad \Sigma=\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & \Sigma_{2}
\end{array}\right]
$$

- Original System

$$
G(s)=C(s I-A)^{-1} B
$$

- Reduced System $\quad G_{a}^{k}(s)=C_{1}\left(s I-A_{11}\right)^{-1} B_{1}$

H_{∞} System Norm

$\square \mathrm{H}_{\infty}$ norm of the system is defined as:

$$
\|G(s)\|_{\infty}=\max _{\omega} \sigma_{1}(G(j \omega))
$$

\square Note that given any matrix A, σ_{i} is the defined as: $\quad \sigma_{i}(A)=\sqrt{\lambda_{i}\left(A^{H} A\right)}=\sqrt{\lambda_{i}\left(A A^{H}\right)}$
$\square \sigma_{1}$ is the largest σ_{i}

- It can be shown that: $\|G(s)\|_{\infty}=\max _{\vec{u}(t) \pm 0} \frac{\|\vec{y}(t)\|_{2}}{\|\vec{u}(t)\|_{2}}$
\square So when $\left\|G_{1}(s)-G_{2}(s)\right\|_{\infty} \approx 0$, the two systems are almost identical

Main Theorems

- Let $G(s)$ denote a stable rational transfer function of degree \mathbf{n} with Hankel singular values $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0$. Let $G_{a}^{k}(s)$ denote the order \mathbf{k} reduction of this transfer function as defined previously. We have:

$$
\left\|G(s)-G_{a}^{k}(s)\right\|_{\infty} \leq 2\left(\sigma_{k+1}+\sigma_{k+2}+\cdots+\sigma_{n}\right)
$$

The minimum error for approximating $G(s)$ with an arbitrary transfer function $H(s)$ of degree $r<n$ is given by:

$$
\|G(s)-H(s)\|_{\infty} \geq \sigma_{k+1}
$$

Numerical Methods

- We can directly obtain the reduced order system without calculating the BR
- Procedure (Safanov'89):
- Compute matrices $V_{L, k}$ and $V_{R, k}$ whose columns form bases for the right and left eigen-spaces of $W_{r} W_{o}$ associated with the big eigen-values $\sigma_{1}{ }^{2}, \cdots, \sigma_{k}{ }^{2}$
- Set $E=V_{L, k}{ }^{T} V_{R, k}$
- Compute singular value decomposition $U_{E} \Sigma_{k} V_{E}{ }^{T}=E$
- Set $S_{L}=V_{L, k} U_{E} \Sigma^{-1 / 2} \in \mathfrak{R}^{n \times k}$
$S_{R}=V_{R, k} V_{E} \Sigma^{-1 / 2} \in \mathfrak{R}^{n \times k}$
- The reduced order system is given by:

$$
\hat{A}=S_{L}{ }^{T} A S_{R} \quad \hat{B}=S_{L}{ }^{T} B \quad \hat{C}=C S_{R} \quad \hat{D}=D
$$

Numerical Methods

- In Safanov's algorithm, we need W_{r} and W_{o} and then the Schur decomposition of $W_{r} W_{o}$ to obtain $V_{L, k}$ and $V_{R, k}$
- Large Lyapunov equations can be solved directly using Krylov-subspace methods (based on the Arnoldi algorithm) as shown in [Saad'89]
\square For the decomposition of $W_{r} W_{o}$, we resort again to the Arnoldi algorithm

Balanced Truncation Via Arnoldi

- Procedure BTVA
- Use Krylov-subspace method to calculate W_{r}, W_{o}
- Use Arnoldi algorithm to calculate big eigenvalues and coresponding left and right eigenvectors $\left(V_{r, k}, V_{l, k}\right)$ of $W_{r} W_{o}$
- Choose the degree for reduced order system based on calculated eigenvalues and the desired error bounds
- Compute

$$
\begin{aligned}
E=V_{L, k}{ }^{T} V_{R, k} & U_{E} \Sigma_{k} V_{E}{ }^{T}=E \\
S_{L}=V_{L, k} U_{E} \Sigma^{-1 / 2} \in \mathfrak{R}^{n \times k} & S_{R}=V_{R, k} V_{E} \Sigma^{-1 / 2} \in \mathfrak{R}^{n \times k}
\end{aligned}
$$

- Compute the reduced order system

$$
\hat{A}=S_{L}^{T} A S_{R} \quad \hat{B}=S_{L}^{T} B \quad \hat{C}=C S_{R} \quad \hat{D}=D
$$

Experimental Results

Experimental Result

Big System

- 320-> 4 : Identical

exp nexu-

Conclusions

- Balanced realization is a provably optimal solution to order reduction of LTI systems
- It results in better reduced system compared to the Pade-based techniques
- The computational complexity may however limit the application of this method
- Better methods for solving Lyapunov equations are required to handle higher order systems

