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Interconnect Trends

• RLC delay increases
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• Cross-coupling capacitance increases
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Problem DefinitionProblem Definition

! Need to find a methodology for analyzing a computationally
intensive system of tightly coupled interconnects

Interconnects
Input

circuits
Output
circuits
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Nth-order passive

LTI system

Reduced-order
System
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reduced-order LTI system
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Frequency-varying error

! Need to spectrally reshape the error

! Explicit moment matching
" Asymptotic Waveform Evaluation (Pillage et al., TCAD’90)

# Write the Taylor series expansion of the original system transfer function
# Truncate the Taylor series expansion to the (2q-1)st-order polynomial
# Given the truncated polynomial, use Pade approximation to find a qth-order

rational function

$ Numerical instability
$ Unstable poles even for a low-order moment matching

Prior WorkPrior Work

! Krylov-subpace-based model-order reduction
" Pade Via Lanczos (Feldmann et al., TCAD’95) and Arnoldi (Silveira et al.,

ICCAD’96)
# Construct a set of orthonormal basis that spans the Krylov-subpace
# Using the Lanczos or Arnoldi method, find a projection matrix that

transforms the system matrix to a lower order matrix in the new space
# For the Arnoldi method, the projected matrix is an upper Hessenberg matrix

$ Passivity is not guaranteed
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" Passivity guaranteed model-reduction (Odabasioglu et al., TCAD’98,
Kerns et al., DAC’97)
# Obtain a congruence transformation using the Arnoldi method
# Apply the congruence transformation directly to the element matrices

Prior WorkPrior Work
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☺ Passivity is guaranteed
$ Like other Krylov-subspace-based methods, does not provide a

provable error bound for the reduced system

! Balanced Truncation (Silveira et al., TCHMT’94, Rabiei et al., ASP-DAC’99)

☺ There is a provable error bound for the reduced system
$ More computational complexity compared to Krylov-subspace

methods
& Would be great if the error can be reshaped in the frequency domain

Balanced TruncationBalanced Truncation

[Ccap] , [L] , [G]
LTI passive network

x: state vector
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Physical interpretation of the controllability grammian:
For all possible inputs to the system that are able to transfer
the state from initial state x0 to the zero state, the input with the
minimum energy is related to the controllability grammian
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! For any passive LTI system, there exist symmetric, positive-
definite matrices, P and Q, that satisfy the Lyapunov equations:

0=++ TT BBPAAP 0=++ CCQAQA TTand
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Balanced TruncationBalanced Truncation
Definition:

The Hankel singular values of the system transfer function
H(s)=C(sI - A)-1B, are the square-roots of the eigenvalues of PQ

Definition:

An LTI system is called balanced if P=Q

Importance of Hankel singular values:

! In a balanced system the value of i-th Hankel singular value,
σi, is associated with i-th state variable, xi

! σi is a relative measure of contribution that xi makes to the
input-output behavior

)( ni1 ≤≤

)( ni1 ≤≤

Balanced TruncationBalanced Truncation
! Apply the Cholesky factorization on matrix Q: RRQ T=

! Construct the balancing transformation: RUT T2/1−Σ=

! Diagonalize the matrix TRPR TT UURPR 2Σ= with IUU T =:

! Using T, obtain the new coordinate transformed balanced
system:

1−= TATAr
TBBr = 1−= CTCr

! The reduced-order model is stable and the ∞L -error is bounded:
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! The kth-order truncated balanced realization is:
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Frequency-weighted Balanced TruncationFrequency-weighted Balanced Truncation

! Need to minimize the error in the frequency range of interest

The error is large
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Frequency-weighted Balanced TruncationFrequency-weighted Balanced Truncation

! The frequency-weighted balanced realization problem is to
calculate of degree k (k<n) so as to minimize)(sHk

r

( )
∞

− )()()()( sWsHsHsW i
k
ro

! What set of points in the x-state space is a part of zero initial
condition response for some bounded and weighted input, v(t)?

Wi(s) B ( ) 1−− AsI C Wo(s)

u(t) x(t) y(t) z(t)v(t)

! What set of points in the x-state space as initial conditions
produce a bounded and weighted output, z(t)?

Frequency-weighted Balanced TruncationFrequency-weighted Balanced Truncation

( ) iiiii DBAsICsW +−= −1)(

( ) ooooo DBAsICsW +−= −1)(

! The controllable set of the system, )()( sWsH i , is the answer
to the first question
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Controller-form realization

! The observable set of the system, )()( sHsWo , is the answer
to the second question
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Frequency-weighted Balanced TruncationFrequency-weighted Balanced Truncation
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Controller-form realization

Lyapunov equation

: Controllability grammian 
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Observer-form realization

Lyapunov equation

: Observability grammian
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Frequency-weighted Balanced TruncationFrequency-weighted Balanced Truncation

! Expand the nn × upper left corner of the Lyapunov equations

01212 =++++ BDDBBCPPBCPAAP T
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IUU T =: ).(: DiagS TUSUX =, such that

IVV T =: ).(: DiagZ TVZVY =, such that
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Frequency-weighted Balanced TruncationFrequency-weighted Balanced Truncation
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),.....,,( 21 nsssdiagS =

),.....,,( 21 nzzzdiagZ =

! Assume that iXrank =)( ni ≤, and jYrank =)( nj ≤,
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! Let P̂ and Q̂ denote the solutions of the Lyapunov equations

0ˆˆ =++ TT BBAPPA

0ˆˆ =++ CCAQQA
TT

! Repeat the same steps that are used for a unity-weighted
system

Experimental ResultsExperimental Results

A single lossy transmission line

Modeled by a ladder of 50 RLC lumped sections
Values of the components are normalized
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Order of the system: 100

Order of the reduced system: 5
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Experimental ResultsExperimental Results
Two capacitively coupled lossy transmission lines

Each line is modeled by a ladder of 20 RLC lumped sections
Values of the components are normalized
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-: Original
--: PRIMA

**: VADI
++: Ours

ConclusionsConclusions

! A frequency-weighted balanced truncation technique for
model-reduction of multiport RLC interconnect was proposed

! This technique yields passive reduced order model even
when both input and output weightings are applied

! The Lyapunov equations are efficiently solved by Krylov-
subspace-based methods in combination with an iterative
Lyapunov equation solver

! Experimental results and comparison with truncated
balanced realization techniques and PRIMA show the higher
accuracy of our approach


