Balanced Truncation with Spectral Shaping for RLC Interconnects

Payam Heydari and Massoud Pedram

Department of Electrical Engineering-Systems
University of Southern California
Los Angeles, CA 90089, U.S.A.

ASP-DAC 2001, Yokohama, JAPAN

Outline

- Interconnect Trends
- Motivation and Problem Definition
- Prior Work
- Balanced Truncation
- Frequency-weighted Balanced Truncation
- Experimental Results
- Conclusions

Interconnect Trends

- RLC delay increases

- Cross-coupling capacitance increases

$S_{1}>S_{2}$
$L_{1}>L_{2}$

Motivation

Lumped circuit model:

Problem. Definition

- Need to find a methodology for analyzing a computationally intensive system of tightly coupled interconnects

Need to spectrally reshape the error

Prior Work

- Explicit moment matching
- Asymptotic Waveform Evaluation (Pillage et al., TCAD'90)
$>$ Write the Taylor series expansion of the original system transfer function
$>$ Truncate the Taylor series expansion to the ($2 q-1$)st-order polynomial
$>$ Given the truncated polynomial, use Pade approximation to find a qth-order rational function
© Numerical instability
© Unstable poles even for a low-order moment matching
- Krylov-subpace-based model-order reduction
- Pade Via Lanczos (Feldmann et al., TCAD'95) and Arnoldi (Silveira et al., ICCAD'96)
$>$ Construct a set of orthonormal basis that spans the Krylov-subpace
$>$ Using the Lanczos or Arnoldi method, find a projection matrix that transforms the system matrix to a lower order matrix in the new space
> For the Arnoldi method, the projected matrix is an upper Hessenberg matrix
(:) Passivity is not guaranteed

Prior Work

- Passivity guaranteed model-reduction (Odabasioglu et al., TCAD'98, Kerns et al., DAC'97)
$>$ Obtain a congruence transformation using the Arnoldi method
> Apply the congruence transformation directly to the element matrices

(-) Passivity is guaranteed
(:) Like other Krylov-subspace-based methods, does not provide a provable error bound for the reduced system
- Balanced Truncation (Silveira et al., TCHMT'94, Rabiei et al., ASP-DAC'99)
() There is a provable error bound for the reduced system
(:) More computational complexity compared to Krylov-subspace methods
Would be great if the error can be reshaped in the frequency domain

Balanced Truncation

$$
\begin{aligned}
& \left\{\begin{array}{l}
\dot{x}=A x+B u \\
y=C x
\end{array}\right. \\
& \left\{\begin{array}{l}
x=C x
\end{array}\right. \\
& A=\mathcal{L}^{-1} \mathcal{G} \quad \mathcal{L}=\left[\begin{array}{cc}
C_{\text {cap }} & 0 \\
0 & L
\end{array}\right] \quad \mathcal{G}=\left[\begin{array}{cc}
G & E \\
-E^{T} & 0
\end{array}\right]
\end{aligned}
$$

- For any passive LTI system, there exist symmetric, positivedefinite matrices, P and Q, that satisfy the Lyapunov equations:

$$
A P+P A^{T}+B B^{T}=0 \quad \text { and } \quad A^{T} Q+Q A+C^{T} C=0
$$

Physical interpretation of the controllability grammian:
For all possible inputs to the system that are able to transfer the state from initial state x_{0} to the zero state, the input with the minimum energy is related to the controllability grammian

Balanced Truncation

Definition:

The Hankel singular values of the system transfer function $H(s)=C(s l-A)^{-1} B$, are the square-roots of the eigenvalues of $P Q$

Definition:

An LTI system is called balanced if $P=Q$

Importance of Hankel singular values:

- In a balanced system the value of i-th Hankel singular value, σ_{i} is associated with i-th state variable, $x_{i}(1 \leq i \leq n)$
- σ_{i} is a relative measure of contribution that x_{i} makes to the input-output behavior $(1 \leq i \leq n)$

Balanced Truncation

- Apply the Cholesky factorization on matrix Q : $Q=R^{T} R$
- Diagonalize the matrix $R P R^{T}: \quad R P R^{T}=U \Sigma^{2} U^{T}$ with $U^{T} U=I$
- Construct the balancing transformation: $\quad T=\Sigma^{-1 / 2} U^{T} R$
- Using T, obtain the new coordinate transformed balanced system:

$$
A_{r}=T A T^{-1} \quad B_{r}=T B \quad C_{r}=C T^{-1}
$$

- The kth-order truncated balanced realization is:

$$
A_{r}=\left[\begin{array}{ll}
A_{r, 11_{k \times k}} & A_{r, 12} \\
A_{r, 21} & A_{r, 22}
\end{array}\right] \quad B_{r}=\left[\begin{array}{c}
B_{r, 1} \\
B_{r, 2}
\end{array}\right] \quad C_{r}=\left[\begin{array}{ll}
C_{r, 1 \times k} & C_{r, 2}
\end{array}\right]
$$

- The reduced-order model is stable and the L^{∞}-error is bounded:

$$
\left\|H(s)-H_{r}^{k}(s)\right\|_{\infty} \leq 2 \sum_{i=k+1}^{n} \sigma_{i}
$$

Frequency-weighted Balanced Truncation

- Need to minimize the error in the frequency range of interest

Frequency-weighted Balanced Truncation

- The frequency-weighted balanced realization problem is to calculate $H_{r}^{k}(s)$ of degree $k(k<n)$ so as to minimize

? What set of points in the x-state space is a part of zero initial condition response for some bounded and weighted input, $v(t)$?
? What set of points in the x-state space as initial conditions produce a bounded and weighted output, $z(t)$?

Frequency-weighted Balanced Truncation

$$
\begin{aligned}
& W_{i}(s)=C_{i}\left(s I-A_{i}\right)^{-1} B_{i}+D_{i} \\
& W_{o}(s)=C_{o}\left(s I-A_{o}\right)^{-1} B_{o}+D_{o}
\end{aligned}
$$

- The controllable set of the system, $H(s) W_{i}(s)$, is the answer to the first question

Controller-form realization

$$
\overline{A_{i}}=\left[\begin{array}{cc}
A & B_{i} C \\
0 & A_{i}
\end{array}\right] \quad \overline{B_{i}}=\left[\begin{array}{c}
B D_{i} \\
B_{i}
\end{array}\right] \quad \overline{C_{i}}=\left[\begin{array}{ll}
C & 0
\end{array}\right]
$$

- The observable set of the system, $W_{o}(s) H(s)$, is the answer to the second question

Observable-form realization

$$
\overline{A_{o}}=\left[\begin{array}{cc}
A & 0 \\
B_{o} C & A_{o}
\end{array}\right] \quad \overline{B_{o}}=\left[\begin{array}{c}
C \\
0
\end{array}\right] \quad \overline{C_{o}}=\left[\begin{array}{ll}
D_{o} C & C_{o}
\end{array}\right]
$$

Frequency-weighted Balanced Truncation

Lyapunov equation

Controller-form realization

Observer-form realization

Frequency-weighted Balanced Truncation

- Expand the $n \times n$ upper left corner of the Lyapunov equations

Frequency-weighted Balanced Truncation

X

$Y$$\quad \square \quad$| $S=\operatorname{diag}\left(s_{1}, s_{2}, \ldots \ldots, s_{n}\right)$ |
| :--- |
| $Z=\operatorname{diag}\left(z_{1}, z_{2}, \ldots \ldots, z_{n}\right)$ |

- Assume that $\operatorname{rank}(X)=i, i \leq n$ and $\operatorname{rank}(Y)=j, j \leq n$

$$
\begin{gathered}
\bar{B}=\operatorname{Udiag}\left(\left|s_{1}\right|^{1 / 2},\left|s_{2}\right|^{1 / 2}, \ldots .,\left|s_{i}\right|^{1 / 2}, 0, \ldots ., 0\right) \\
\bar{C}=\operatorname{diag}\left(\left|z_{1}\right|^{1 / 2},\left|z_{2}\right|^{1 / 2}, \ldots \ldots,\left|z_{j}\right|^{1 / 2}, 0, \ldots ., 0\right) V^{T} \\
A \hat{P}+\hat{P} A^{T}+\bar{B} \bar{B}^{T}=0 \\
A^{T} \hat{Q}+\hat{Q} A+\bar{C}^{T} \bar{C}=0
\end{gathered}
$$

- Let \hat{P} and \hat{Q} denote the solutions of the Lyapunov equations
- Repeat the same steps that are used for a unity-weighted system

Experimental Results

A single lossy transmission line

Modeled by a ladder of 50 RLC lumped sections Values of the components are normalized

$$
W_{i}(s)=\frac{1}{s+0.4}
$$

$$
\begin{gathered}
C_{1}=C_{2}=\cdots \cdots=C_{50}=2 \times 10^{-2} \\
L_{1}=L_{2}=\cdots \cdots=L_{50}=0.5 \\
R_{1}=R_{2}=\cdots \cdots=R_{50}=0.25 \\
R_{s}=0
\end{gathered}
$$

Experimental Results

Two capacitively coupled lossy transmission lines
Each line is modeled by a ladder of 20 RLC lumped sections Values of the components are normalized

- A frequency-weighted balanced truncation technique for model-reduction of multiport RLC interconnect was proposed
- This technique yields passive reduced order model even when both input and output weightings are applied
- The Lyapunov equations are efficiently solved by Krylov-subspace-based methods in combination with an iterative Lyapunov equation solver
- Experimental results and comparison with truncated balanced realization techniques and PRIMA show the higher accuracy of our approach

