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Abstract
A gate level probabilistic error propagation modelpresented which
takes as input the Boolean function of the gataytirsignal probabilities,
the error probability at the gate inputs, and thte gerror probability and
generates the error probability at the output ef glate. The presented
model uses the Boolean difference calculus and lmanefficiently
applied to the problem of calculating the erroryadaility at the primary
outputs of a multi-level Boolean circuit with a #ncomplexity which is
linear in the number of gates in the circuit. Tisislone bystarting from
the primary inputs and moving toward the primarypoits by using a
post-order—reverse Depth First Search (DFS)—trabeExperimental
results demonstrate the accuracy and efficiendheproposed approach
compared to the other known methods for error ¢aficun in VLSI
circuits.

Keywords
Signal probability, Error probability, Co-factor, afial Boolean

Difference, Re-convergent fanout, Spatial correlai

1.1 Introduction

As CMOS hits nano-scale regime, device failure ma@ms such as cross talk,
manufacturing variability, and soft error becomgngicant design concerns. Being
probabilistic by nature, these failure sources haw&hed the CMOS technology toward
stochastic CMOS [1]. For example, capacitive ardiative coupling between parallel
adjacent wires in nano-scale CMOS Integrated GsciCs) are the potential sources
of crosstalk between the wires. Crosstalk can idd=rise flipping error on thectim
signal [2]. In addition to the probabilistic CMOBromising nanotechnology devices
such as quantum dots are used in technologies asicQuantum Cellular Automata
(QCA). Most of these emerging technologies arenatidy probabilistic. This has made
reliability analysis an essential piece of ciraesign. . Reliability analysis will be even
more significant in designing reliable circuitsngsiunreliable components [3][4].

Circuit reliability will thus be an important trad# factor which has to be taken
care of similar to traditional design tradeoff farst such as performance, area, and
power. To include the reliability into the desigadeoff equations, there must exist a
good measure for the circuit reliability, and themast exist fast and robust tools that,
similar to timing analyzer and power estimator $p@re capable of estimating circuit
reliability at different design levels. In [5] awits have proposed a Probabilistic
Transfer Matrix (PTM) method to calculate the outgignal error probability for a
circuit while [6] presents a method based on theb&bilistic Decision Diagrams
(PDDs) to perform this task.



In this chapter we first introduce a probabiligate level error propagation model
based on the concept of Boolean difference to gateaerrors from inputs to output of
a general gate. We then apply this model to acclmurthe error propagation in a given
circuit and finally estimate the error probabildy the circuit outputs. Note that in the
proposed model a gate’s Boolean function is usetktermine the error propagation in
the gate. An error at an output of a gate is duestmput(s) and/or the gate itself being
erroneous. The internal gate error in this worknzdeled as an output flipping event.
This means that, when a faulty gate makes an etfops (changes a “1” to a “0” and a
“0” to a “1”) its output value that it would haveegerated given the inputs, Von
Neumann error model. In the rest of this chapter,oall our circuit error estimation
technigque the Boolean Difference-based Error Catoul or BDEC for short, and we
assume that a defective logic gate produces thegvoutput value for every input
combination. This is a more pessimistic defect rhidten the stuck-at-fault model.

Authors in [5] use a PTM matrix for each gate @épresent the error propagation
from the input(s) to the output(s) of a gate. Tldso define some operations such as
matrix multiplication and tensor product to use thate PTMs to generate and
propagate error probability at different nodes inirauit level-by-level. Despite of its
accuracy in calculating signal error probabilityTNP technique suffers from the
extremely large number of computational-intensigeks namely regular and tensor
matrix products. This makes the PTM technique ex¢étg memory intensive and very
slow. In particular, for larger circuits, size dfet PTM matrices grows too fast for the
deeper nodes in circuit making PTM an inefficienewen infeasible technique of error
rate calculation for a general circuit. Referen@sand [9] developed a methodology
based on probabilistic model checking (PMC) to eatd the circuit reliability. The
issue of excessive memory requirement of PMC witendircuit size is large was
successfully addressed in [10]. However, the timenmexity still remains a problem.
In fact, the authors of [10] show that the run tifoetheir space-efficient approach is
even worse than that of the original approach.

Boolean difference calculus was introduced and usefll1] and [12] to analyze
single faults. It was then extended by [13] and] fb4handle multiple fault situations,
however, they only consider stuck-at-faults andstthe not consider the case when the
logic gates themselves can be erroneous and hege¢eanduced output error may
nullify the effect of errors at the gate’s input(s) [15] authors use Bayesian networks
to calculate the output error probabilities withocbnsidering the input signal
probabilities.

The author in [6] uses probabilistic decision déags (PDD) to calculate the error
probabilities at the outputs using probabilistidega While PDDs are much more
efficient than PTM for average case, the worst-casaplexity of both PTM and PDD-
based error calculators is exponential in the nurabaputs in the circuit.

In contrast, we will show in section 1.5 that BDIE@lculates the circuit error
probability much faster than PTM while achievingaxxurate results as PTM’s. We
will show that BDEC requires a single pass over dieuit nodes using a post-order
(reverse DFS) traversal to calculate the errorbaitities at the output of each gate as



we move from the primary inputs to the primary autp hence, complexity is O (N)
where N is the number of the gates in the cireut O (.) is the big O notation.

1.2 Error Propagation Using Boolean Difference Calculus

Some key concepts and notation that will be usethenremainder of this chapter
are discussed next.

1.2.1 Partial Boolean difference

The partial Boolean difference of functidfxi, %, ..., %) with respect to one
variable or a subset of its variables [14] is defiras:
i: f Of.
a)q X %
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where represents XOR operator afid is the co-factor of with respect to, i.e.,

fo = PO X X =L X )
fy = 00X % = 006 00X (1.2)

Higher order co-factors of can be defined similarly. The partial Boolean
difference off with respect to; expresses the condition (with respect to othealbes)
under whichf is sensitive to a change in the input variakleMore precisely, if the
logic values of &, ..., X1, %+1, ..., %} are such thadf/ox, = 1, then a change in the
input valuex;, will change the output value &f However, wherdf/ox = 0, changing
the logic value ok; will not affect the output value 6f

It is worth mentioning that the@rder-k partial Boolean differencedefined in
Equation 1.1 is different from tHé" Boolean differencef functionf as used in [13],

which is denoted by f/axl..ﬂxk . For example, the"2Boolean difference of function
f with respect to; andy; is defined as:
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Therefore 9*f/6x0x#0t10(xx).
1.2.2 Total Boolean difference

Similar to the partial Boolean difference that seale conditions under which a
Boolean function is sensitive to change of anyt®fnput variables, we can defitetal
Boolean differenceshowing the condition under which the output oé tBoolean
function f is sensitive to thasimultaneouschanges in all the variables of a subset of



input variables. For example, the total Boolearfiedéince of functiorf with respect to
XX is defined as:

O = o ) s (e )
A(xx)  0(xXx) | o(xx) | (1.4)

whereAf/A(xx) describes the conditions under which the output isfsensitive to a
simultaneous change x andx. That is, the value of changes as a result of the
simultaneous change. Some examples for simultanebasges inx, and x; are
transitioning fromx=x;=1 to x=x;=0 and vice versa, or from=1, =0 to x=0, x=1
and vice versa. However, transitions in the fornxek;=1 to x=1, =0 or x=1, x=0
to x=0, x=0 are not simultaneous changes. Note #fi@(xx;)) describes the conditions
when a transition from=x;=1 to x=x;=0 and vice versa changes the value of function
f.

It can be shown that the total Boolean differenc&quation 1.4 can be written in
the form of:
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(1.5)
The total Boolean difference with respect to thragables is:
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It is straightforward to verify that:
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In general total Boolean difference of a functiamith respect to an n-variable subset of
its inputs can be written as:
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wheremy’s are defined as follows:

m, :Xl_)l(z _}(nl_?$1
M=%% X, X
My, =% X X, X, .
and we have:
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1.2.3 Signal and error probabilities
Signal probability is defined as the probability éosignal value to be “1”. That is:

b= Pr{ %= ]} (1.11)

Gate error probability is shown ly and is defined as the probability that a gate
generates an erroneous output, independent ofpipdied inputs. Such a gate is
sometimes called (&g)-reliable gate. Signal error probability is defines the
probability of error on a signal line. If the sigime is the output of a gate, the error
can be either due to error at the gate input($hegate error itself. We denote the error
probability on signal line; by ;.

We are interested in determining the circuit outpubr rates, given the circuit
input error rates under the assumption that eatshigahe circuit can fail independently
with a probability ofeg. In other words, we account for the general cedsedtiple
simultaneous gate failures.

1.3 Proposed Error Propagation Model

In this section we propose our gate error modeilhim Boolean difference calculus
notation. The gate error model is then used toutate the error probability and
reliability at outputs of a circuit.

1.3.1 GateError Mod€

Figure 1.1 shows a general logic gate realizingl®amo functionf, with gate error
probability of ¢5. The signal probabilities at the inputs, i.e., Qabilities for input
signals being 1, ang, p2,..., pn While the input error probabilities agg, &,..., &. The
output error probability is;.

P1.&6g ——

p2182 — fg
H 1)

g

Pnsén —)

Figure 1.1 Gate implementing function f



First consider the error probability equation fobufer gate shown in Figure 1.2.
The error occurs at the output if (i) the inpuéersoneous and the gate is error free or (ii)
the gate is erroneous and the input is error ffaerefore, assuming independent faults
for the input and the gate, the output error prditglior a buffer can be written as:

6; :é‘ln(l_gg)-l- (1_8|n kg :€g+ (1_ 2’g rir

(1.12)
whereei, is the error probability at the input of the buffé¢ can be seen from this
equation that the output error probability for lmuffs independent from the input signal

probability. Note Equationl1.12 can also be usedxjaress the output error probability
of an inverter gate.

Figure 1.2 A faulty buffer with erroneous input

We can model each faulty gate with erroneous inpstan ideal (no fault) gate
with the same functionality and the same inputsanes with a faulty buffer as shown
in Figure 1.3.

P1.&1 > e Py, &—

p. &
I fe =T (idreal) al@
Pn én — pn!gn._’ "

Figure 1.3 The proposed model for a general faulty gate

Now consider a general two-input gate. Using thdt fmodel discussed above, we
can write the output error probability consideraifjthe cases of no error, single error
and double errors at the input and the error ingéte itself. We can write the general
equation for the error probability at the output,as:

£,1-¢,) Pr{i}+ (- ¥, Pr{i}
0%, 0%,

1%2 r

€in (1.13)
where Pr{.} represents the signal probability fuoctand returns the probability of its
Boolean argument to be “1”. The first and the sect@mms ingj, account for the error
at the output of the ideal gate due to single irgotars at the first and the second inputs,
respectively. Note error at each input of the idgste propagates to the output of this
gate only if the other inputs are not masking lieThon-masking probability for each
input error is taken into account by calculating signal probability of the partial

£,=&,+(1-2¢)




Boolean difference of the functidnwith respect to the corresponding input. The first
two terms ingj, only account for the cases when we have singlatiepors at the input
of the ideal gate, however, error can also occuerwboth inputs are erroneous
simultaneously. This is taken into account by nplythg the probability of having
simultaneous errors at both inputs, i&s,, with the probability of this error to be
propagated to the output of the ideal gate, he. signal probability of the total Boolean
difference off with respect togxe.

For 2-input AND gatefExixp) shown in Figure 1.4 we have:

of = = i = =
Af
A X,)

Pr

=PAX%+ x4} =(+ p)(F p)* AR (.14

=1-(p+ P.)+ 2R P,
Plugging Equation 1.14 into Equation 1.13 and aftene simplifications we have:

Exe =&, +(1— 259)(£1p2+52p1+£§2( 1~ pt+ p)+ 2p1p)) (1.15)
P& = € €
0, ¢, —] O AND2

Figure 1.4 A 2-input faulty AND gate with erroneous inputs
Similarly, the error probability for the case ofrfput OR can be calculated as:

Eore =€yt (1_ 2£g) (51(1_ pz) + 52( 1- pl) + ‘9152( 2p,p,— :)) (1.16)
And for 2-input XOR gate we have:

Exore = €4 (1— 259)(31 +E,~ 2.8,)
(1.17)

It is interesting to note that the error probabildly the output of the XOR gate is

independent of the input signal probabilities. Gelherthe 2-inpout XOR gate exhibits

larger output error compared to 2-input OR and Abdles. This is expected since

XOR gates show maximum sensitivity to input errors (XQiRe inversion, is an

entropy-preserving function).The output error espren for a 3-input gate is:
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(1.18)

As an example of a 3-input gate, we can use Equalid8 to calculate the
probability of error for the case of 3-input ANDtgaWe can show that the output error

probability can be calculated as:

P PE1t PLPELT PBPE S
+p3(1_2(p2+ p1)+2p1 pz)‘gfgz
£AND3=£g+(1_2£g) +p, (1= 2(p, + P )t 2P B E £
+P,(1-2(p+ R)+ 2R REES
+(1—2(|01+ P+ P

+4(pp,t B Pt RR-6RPR

Now we give a general expression for a 4-inputdagite as:

H] 515253
(1.19)
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The Boolean expression for a general k-input gate lbe calculated in a similar

manner.

1.3.2 Error Propagation in 2-to-1 Mux Using BDEC

We represent 2-to-1 Multiplexer (Mux) function ds: as+ bs.Using BDEC the output
error probability in terms of the gate error prohigh input signal probabilities and

input error probabilities is:

+e,(1-¢,) (1~ &)

Af

+E,6,E4 Pr(

o)

of

£, (1-6)(1-e) P 2|, (re ) (re) PO

a

P % |+ eai(re) P{A(A;b)J

(1.21)

Now we step wise show how to calculate variousigdaaihd total Boolean differences.

First we calculate all single variable partial Bzeoh differences as:

11
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Then we calculate two variables partial Booleafedénces as:
of B of
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Finally we calculate three variable partial Boolefferences as:
of _ LR Nt Ot N -t Ot
a(abs) = fabsD féffs a(abS) abs abs a(a_bS) abs[| abs a(ab_S) absD abs
=100 =000 =101 =100
=1 =0 =0 =1
Next we calculate total Boolean differences as:

AF __of [ of [ o°F O __of jof jotf  _af ot jof o
Afas) da ds 0@ A(bs) ob 0s ol s A(ab) 0a db odab
=sO(ad bO1 =sO(ad hO1 =s0's00
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=s0O(ad b
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Plugging these values in Equation 1.21
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1.3.3 Circuit Error Model

In this section we use the gate error model pragpassub-section 1.3.1 to calculate the
error probability at the output of a given circuidiven a multi-level logic circuit
composed of logic gates, we start from the primiapyits and move toward the primary
outputs by using a post-order (reverse DFS) traveFor each gate, we calculate the
output error probability using input signal prolaigis, input error probabilities, and
gate error probability and utilizing the error mbgeoposed in sub-section 1.3.1. The
signal probability for the output of each gatelsacalculated based on the input signal
probabilities and the gate function. The processuiput error and signal probability
calculation is continued until all the gates aregessed. For each nodén the circuit,
reliability is defined as:

X =1-¢; (1.23)

After processing all the gates in the circuit aatétglating error probabilities and
reliabilities for all the circuit primary outputsye can calculate the overall circuit
reliability. Assuming that different primary outguof the circuit are independent, the
overall circuit reliability can be calculated astproduct of all the primary outputs
reliabilities, that is:

AXcircuit = |_| )(POI
i (1.24)

The case of dependent primary outputs (which isicalsly a more realistic
scenario) requires calculation of spatial correlaticoefficient as will be outlined

13



further on in the paper. The detailed treatmentspétial correlation coefficient
calculation however falls outside the scope ofpfesent work.

This error propagation algorithm has a complexify@2N) where k is the
maximum number of inputs to any gate in the ciruitich is small and can be upper
boundeda priori in order to giveD(N) complexity) andN is the number of gates in the
circuit. This complexity should be contrasted tattof the PTM based or the PDD-
based approaches, that have a worst case comptéx2"). The tradeoff is that our
proposed approach based on post-order travershéafircuit netlist and application of
Boolean difference operator results in only apprate output error and signal
probability values due to the effect of re-convetgianout structures in the circuit,
which createspatial correlationsamong input signals to a gate. This problem has be
extensively addressed in the literature on imprg\he accuracy of signal probability
calculators [17][18]. Our future implementation BDEC shall focus on utilizing
similar techniques (including efficient calculatioh spatial correlation coefficients) to
improve the accuracy of proposed Boolean differdrased error calculation engine.

1.4 Practical Considerations

In this section we use the error models introduceprevious section to calculate the
exact error probability expression at the outpu tree-structured circuit.

1.4.1 Output error expression

For the sake of elaboration, we choose a 4-inpuDAjdte implemented as a balanced
tree of 2-input AND gates as shown in Figure 1.% &8n calculate the output error of
this circuit by expressing the error at the outpiutach gate using Equation 18.

y €1 T
P1,& gg X
P2, & —
€AND4
&g
Dat
P3, &3 — Y
&g
Ps:&s —

Figure 1.5 Balanced tree implementation of 4-input AND gate

Equation 1.25 provides the exact output error poditya of the circuit shown in
Figure 1.5 in terms of the input signal probalgbtiand input error probabilities where
similar to [18] higher order exponents of the sigpeobabilities are reduced to first
order exponents.

14



Enos = (PoPsPE PR PE BB PES DR R )
+0,p,(1-2(p+ p)+2pp)eg,

+p,p(1-2(p+ p)+2pp)Ess

+p,0(1-2(p+ p)+2pp)EE,

+pp(1-2(p+ p)+ 2R p)e £,

+pp(1-2(pt )+ 2R p)e s,

+pp(1-2(p+ p)+2pp)Es,

+p,(1-2(p+ B+ )+ 4 ARFRR* BR)-6RRR)EE£,

+p,(1-2(p+ P+ p)*+4( AP+ AR+ RR-6RRPEES,

+p,(1-2(p+ R+ p)+4 AR+ ARt RRA-6RRRESE,

+p(1-2(p+p+p)+4 o+ Bt RH-6BRPESE.
1-2(p+ p,+ B+ )

. HApptppt pRt pRY R AT RA
-8(pPp*+ ABRY ARRY RRD
+14p,p, p; P,

~—_— —rf —rf '

£1£2£3£ 4

(1.25)

In Equation 1.25, without loss of generality, weswameeg- in order to reduce the
length of the expression.

Using symbolic notation along with higher order empnt suppression, the model
presented in section 1.3 can compute the exaptibatror probability in circuits with
no reconvergent fanout. We will show in next sectioat by sacrificing little accuracy
and using numerical values instead of symbolic ttmtathe computational complexity
of our gate error model becomes linear in termb@ihumber of gates in the circuit.

1.4.2 Reconvergent Fanout

Figure 1.6 shows an example of a circuit with reevgent fanout. It is clear from the
figure that inputs to the final logic gate are mudependent. Therefore, if the BDEC
technique discussed in Section 1.3 is applied itodincuit, the calculated output error
probability will not be accurate. In this sectioe wescribe a modification to the BDEC
technique that improves the probability of error fbe circuit in the presence of
reconvergent fanout structures in the circuit.

Local reconvergent fanout such as the one depictddgure 1.6 can be handled by
collapsing levels of logic. For this example, wensider all the four gates in Figure 1.6
as a single super gate and then apply the BDEGimeh to this super gate. For the
input to output error propagation in the originateit, BDEC will ignore the internal
structure of the super gate and only considersathgal function implemented by the

15



super gate, 2-to-1 Mux in this case. The origimaplementation information can be
taken into account by properly calculating tgeralue for this new 3-input super gate.

Super Gate

Pa:éa
1 & AN
! g N
ps ’ 83 E \\
\\SMUXZtol
; 77" Out
: g ’

Figure 1.6 Re-convergent fanout in a 2-to-1 Multiplexer

Thegy value for the collapsed gate is calculated usiDg8 for the original circuit
block before collapsing but assuming that the inguior probabilities are zero. For
example for the circuit in Figure 1.6 the errorlpability at the output of the top AND
gate and the inverter using BDEC equations destrbesection 1.3.1 and assuming
input error probabilities to be zero will lsg each. Similarly the error probability at the
output of the bottom AND gate will Bg , =¢_ +(1-2¢ )(,p,)- Likewise we can calculate

the expression for the error probability at thepotitof the OR gate which in this case
will be thegy of the super gate. Equation 1.26 shows the fix@itession for they value

of the collapsed gate; note that tyevalue for the collapsed gate is also a function of
the input signal probabilities. As discussed int®ecl.4.1, the error expression for the
super gatey has been obtained after suppressing the expooésignal probabilities
that are greater than “1” to “1”. In contrast we dot suppress the exponents sgf
values since this higher exponent may have coyreedulted from the fact that each
gate in the circuit can fail with same error prabgbOn the other hand the higher
exponent may have arisen from the fact that ther @f some multiple-fanout gate is
propagated to a reconvergent fanout point throuffierdnt paths in the circuit, and
hence, the higher exponent must indeed be suppteSsethere is some inaccuracy in
our proposed method. To be able to decide precigkegther or not the exponentsayf
must be suppressed, we will have to use a uniquebasly for each gate’s error
probability and propagate these unique symbols utfitout the circuit while
suppressing the higher exponents of each uniquéaymhe results reported in Table
1.1 have been obtained using the estimation ofrsygie’sey from our implementation
of BDEC in SIS [20], which does not include expanguppression.
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Table 1.1 Output error probability with re-convergent fanout

SN |Pa|Pb|Ps| &g €. & & | BDEC | BDEC-CLP | PTM

1 | 05| 05/ 0.5 0.05 005 005 0.050.1814] 0.1835 | 0.182p
2 |01] 02] 03 005 003 005 0050.1689] 0.1820 | 0.185P
3 | 05| 06 077 005 003 005 0050.1909] 0.1827 | 0.183p
4 [07] 08 09 005 0035 005 0050.1858] 0.1684 | 0.1668
5 | 05| 0.5/ 0.5 0001 0.001 0.001 0.008.0044] 0.0044 | 0.0044
6 | 05| 0.5/ 0.5 0.002 0.001 0.001 0.008.0072] 0.0072 | 0.007
7 |05] 05 05 001 001 008 0.410.0421] 0.0422 | 0.042
8 | 05| 05 05 002 001 002 00300842 0.0815 | 0.081%
9 | 05| 05 05 008 008 008 0.080.2603] 0.2645 | 0.2638
10 | 05| 0.5/ 0.5 00§ 0.06 0.0F 0.08.2027] 0.2037 | 0.2032

Table 1.1 shows that BDEC + logic collapsing prauaccurate results for the
circuit in Figure 1.6. Table 1.2 shows the comparisf percent error for BDEC and
BDEC + collapsing as compared to PTM. If the re@gent fanout extends over
multiple circuit levels then multiple level colldpg can be used but after few levels,
the computational complexity of computing outpubeprobability of a super gate with
many inputs will become prohibitive and a trade{métween accuracy and complexity
will have to be made.

Table 1.2 Percent error reduction in output error probabilising BDEC +Collapsing

wfmlmwml e [ ool « [85] 70"
1 05| 05| 05 0.05 0.05 0.0% 0.05 0.84% 0.33%
2 01| 02| 03 0.05 0.05 0.0% 0.05 8.78% 1.75%
3 05| 06| 07 0.05 0.05 0.0% 0.05 4.34% 0.15%
4 07| 08| 09 0.05 0.05 0.0% 0.05 11.39% 0.94%
5 05| 05| 05| 0.001f 0.001 0.001 0.001 0.02%% 0.01%
6 05| 05| 05| 0.002f 0.001 0.001 0.001 0.01%0 0.01%
7 05| 05| 05 0.01 0.01 0.01 0.01 0.21% 0.08%
8 05| 05| 05 0.02 0.01 0.02 0.03 3.48% 0.12%
9 05| 05| 05 0.08 0.08 0.08 0.08 1.13% 0.46%
10 05| 05| 05 0.05 0.06 0.0y 0.08 0.25% 0.24%
11 - - - - - - Average | 3.05% 0.41%
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In passing, we point out that the correlation deefht method and partial collapse
methods both tackle the same problem, that is, tooaccount for the correlations due
to reconvergent fanout structures in VLSI circuifbe tradeoff is that the correlation
coefficient method has high complexity due to tleguirement to calculate and
propagate all correlation coefficients along withnsl and error probabilities whereas
the partial collapse has high complexity due tortbed to calculate output signals and
error probabilities of super gates with a large hanmof inputs. In practice, the partial
collapse of 2 or 3 levels of logic into each nosieper gate) or the computation of only
pair wise spatial correlations is adequate andigesvhigh accuracy.

1.5 Simulation Results

In this section we present some simulation restdts the proposed circuit
reliability technique and we compare the resultswfapproach with those of PTM and
PGM [19].

We implemented the proposed error calculator dgarithm (BDEC) in SIS [20].
SIS has been widely used by logic synthesis comtydar designing combinational
and sequential logic circuits. We extended existogic simulation in SIS with faulty
circuit simulation based on Monte Carlo simulatibechnique. We attached a
probability function with each node which flips therrect output of the node with a
predefined error probability. We used this Montel@€aimulation to form a reference
to compare BDEC results for medium and large discui

We added a new BDEC module to the existing SIS ggekWhile simulating a
logic circuit, BDEC module models each gate as @abilistic gate. We used the
built-in co-factor function in SIS to develop paitiBoolean difference and total
Boolean difference functions that are used to pyafa single and simultaneous
multiple errors from the inputs to the output oé thate respectively. We have also
implemented level collapsing to overcome the insmties introduced because of local
reconvergent fanouts. Note that while collapsingle of logic, we do not change the
original logic network; instead, we simply recali®l and update the error and signal
probability at the output of the nodes that haveneergent fanout structures inside
their corresponding super gate.

In the past, SIS has been used to apply variougydelrea and power level
optimizations to logic circuits. By incorporatindBC module to SIS, we expect that
researches will be able to use SIS to develophiétizaware optimizations for logic
circuits. For example, given a library of gateshwdifferent levels of reliability, design
a circuit with given functionality that minimizesea, delay and power overheads while
meeting a given reliability constraint.

Regarding simulation results in this section, fongdicity, but without loss of
generality, we assume all gates in a circuit h&teesame gate error probabildy All
primary inputs are assumed to be error free andiotpaporally uncorrelated.
Moreover, signal probability for all the inputs weset to 0.5. The gate error probability
was set to 0.05. We thus present results that $tmwefficiently BDEC can calculate
the output reliability for circuits with high primainput count. Running our MATLAB
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7.1-based implementation of PTM on a computer aysteth 2GBytes of RAM, we
observed that typically for circuits with 16 or meomputs, PTM reported out of
memory error. BDEC, however, does the calculationgh faster and more efficient
than PTM.

Table 1.3 shows the results for reliability cal¢wa for some tree-structured
circuits. For example, “8-Input XOR BT” (BT for Baiced Tree) refers to 8-input
XOR function implemented using 2-input XOR gateghree levels of logic whereas
“8-Input XOR Chain” refers to the same functionlisad as a linear chain of seven 2-
input XOR gates. We also show results for two I@sincircuits with balanced tree
implementation of 2-input gates having layers aff@4t AND, OR or XOR gates. First
letter of gate name is used to show the gates imsedch level. For example, AOXO
means that the circuits consists of four leveldogic with AND, OR, XOR and OR
gates at the first, second, third and fourth levespectively. Since the complexity of
the PTM approach increases with the number of pyimguts exponentially, all the
circuits in Table 1.3 are chosen to have relativatyall number of primary inputs.
Second and third columns of this table compare ekecution times for PTM and
BDEC, respectively, while the forth and the fifthleamns compare the output reliability
for the two approaches. It can be seen that ouypgsed BDEC technique achieves
highly accurate reliability values, i.e., the rblidy values are different than PTM ones
by at most 0.1% for the circuits reported in Tabld . More importantly, Table 1.3
shows the difference between the scaling trendh@fetxecution time in both PTM and
BDEC techniques. In PTM, the execution time incesasxponentially when we move
from smaller circuits to larger circuits in Taldle8, whereas in BDEC the change in the
execution time when we move from smaller circuitshte larger ones in Table 1.3 is
really small. For two cases, 16-input XOR chain aGeinput AND chain, the system
runs out of memory while executing PTM techniquieis’shows that execution of PTM
technique for even relatively small circuits neadsuge amount of system memory.

Table 1.3 Circuit reliability for tree-structured circuits ¥iag relatively small number of Pls

Execution Time (ms) Circuit Réiability

Benchmarks # of Gates PTM BDEC PTM BDEC
8-Input XOR B1 7 0.79( 0.011 0.739: 0.739:
16-Input XOR BT 15 1664.t 0.01% 0.602¢ 0.602¢
16-Input XOR Chail 15 Out of Memon 0.01¢f Out of Memon 0.602¢
8-Input AND BT 7 0.79¢ 0.01( 0.939: 0.938:
16-Input AND BT 15 1752.; 0.01% 0.946¢ 0.946:
16-Input AND Chair 15 Out of Memon 0.01¢ QOut of Memon 0.909:
16-input AOXO BT 15 1769.: 0.01% 0.762: 0.761¢
16-input OXAX BT 15 1593.] 0.013 0.736: 0.736:

Another important advantage of the proposed BDEhrtejue which can be
observed from Table 1.3 is that the complexityha$ technique mainly depends on the
number of the gates in the circuit; however, theglexity of PTM technique depends
on several other factors such as number of thetshpuidth and depth of the circuit,
number of the wire crossovers, etc. In other woefficiency (execution time and
memory usage) of PTM depends not only on the nurob#re gates in the circuit, but
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on the circuit topology. This is a big disadvantdge PTM making it an infeasible
solution for large and/or topologically complexatiits.

It is worth mentioning that although the complexity Boolean difference
equations increases exponentially with the numlbahe inputs of the function; this
does not increase the complexity of the BDEC tagpimni The reason is the fact that
using gates with more than few inputs, say 4, & #ctual implementation of any
Boolean function is not considered as a good degirpctice. This makes the
complexity of calculating Boolean difference eqaas small. On the other hand for a
fixed library of gates, all the Boolean differereguations can be calculated offline, so,
there is no computational overhead due to calagatie Boolean difference equations
in BDEC.

Table 1.4 Circuit Reliability for Tree-Structured Circuits Viag relatively Large Number of Pls

Circuit # of Gates Execution Time (ms) Circuit Reliability
64-Input XOR (BT 63 0.04¢ 0.500:
64-Input XOR (Chain 63 0.04: 0.500:
64-Input AND (BT) 63 0.05¢ 0.947¢
64-Input AND (Chain 63 0.051 0.909:
64-Input AOXAOXBT 63 0.05¢ 0.631¢
64-Input XAOXAOBT 63 0.05¢ 0.947¢
16-Bit RCA 80 0.11¢ 0.013:
32-Bit RCA 16C 0.21¢ 0.000:
11 46 0.05¢ 0.358(
Cile 6 0.01: 0.803:

Table 1.4 shows the results, execution time andhiéty calculation for some of
synthesized tree-structured circuits with relagivielrger number of inputs. Since the
complexity of the PTM is really high for these ciits we only show the results for
BDEC. Some of the circuits in Table 1.4 are thgdaersions of the circuits reported
in Table 1.3. We have also included 16 and 32ipjile carry adder (RCA) circuits.
Results for two benchmark circuits, 11 and C18,ase included in this table.

From the results of Table 1.3 and Table 1.4 we tiod¢ circuits that use more
XOR gates will incur smaller output reliability ueda uniform gate failure probability.
Furthermore, moving XOR gates closer to the prin@urputs results in lower output
reliability. Therefore, in order to have more rbledesigns, we must have lower XOR
gates close to the primary outputs.

Table 1.5 Circuit Reliability and Efficiency of BDEC Comparéd PGM and PTM

Execution Time Circuit Reliability % Error Compared
Circuit (ms) (e,=0.05) to PTM

BDEC PTM BDEC PGM PTM BDEC PGM
2-4 Decode 0.01¢ 6.72¢ 0.741( 0.739: 0.747¢ 0.92% 1.10%
FA1 0.01: 2.39¢ 0.787¢ 0.789¢ 0.809¢ 2.77% 2.48%
FA2 0.017 3.31¢ 0.632¢ 0.593: 0.653: 3.17% 9.18%
C17 0.017 2.30¢ 0.763¢ 0.762( 0.783¢ 2.59% 2.79%
Comp 0.01¢ 0.937 0.751: 0.729: 0.826¢ 9.11% 11.76%
Avag. Err. - - - - - 3.71% 5.46%
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Table 1.5 compares the results for PTM, PGM [19f] B8DEC for some more
general circuits. Note FA1 and FA2 are two différenplementations of full adder
circuit. The former is XOR/AND implementation andiet latter is NAND only
implementation. Also Comp. is a two-bit comparatocuit. We report the results for
our implementation of PTM and BDEC; however, simez were not able to produce
the results of PGM, we took the reported resultflB]. As it can be seen from this
table, BDEC shows better accuracy as compared ¥.PG

Table 1.6 Runtime Comparison between BDEC and PTM for somrgd.8enchmark Circuits

Benchmark | #of Gates | Pls | POs | BDEC Exec Time (sec) PTM Exec Times (sec)
C17 6 5 2 7.00E-06 0.31:

Pcle 71 19 9 2.40E-05 4.30(

z4ml| 74 7 4 2.20E-05 0.84(

Mux 10€ 21 1 2.8CE-05 2.11:

9symm 252 9 1 5.20E-05 696.21:

Table 1.6 shows the results of running BDEC for eatmt larger benchmark
circuits. In the last column, we report the resdiéis some of the circuits that were
analyzed in [5] to compare the run times of runnifigM with that of BDEC. PTM
results were reported for technology independentiwmarks where as BDEC results
are for benchmark circuits mapped to a cell libriawryp5nm CMOS technology. PTM
results were generated using a system with 3GH#UPer processor where as BDEC
results are generated from a system with 2.4GH¥E chra processor. One can see that
BDEC (which has very low memory usage) is ordemnagnitude faster than PTM.

Table 1.7 shows how BDEC execution times lineadgles with the number of
gates. As it was mentioned in the introduction laf tchapter, the worst-case time
complexity of previously proposed techniques suEiP@M and PDD is exponential in
terms of the number of the gates in the circuit.

Table 1.7 Circuit Reliability for Large Benchmark Circuits

Benchmark # of Gates Pls POs BDEC Exec Time BDEC. Rgp_orted
(p sec) Reliability
Majority 22 5 1 9.C 0.699¢
Decoc 66 5 16 18.C 0.212(
Coun 13¢ 31 16 38.C 0.0701
frgl 142 28 3 48.C 0.613¢
C88( 44z 60 26 96.C 0.003¢
C354( 154¢ 50 22 358.( 0.000:
alu4 2492 12 8 577.( 0.023:
t481 4767 16 1 1710.( 0.863(

Table 1.8 shows how BDEC execution times and r#iliplzalculations compared
to those of Monte Carlo (MC) simulations. We coulot run PTM for larger circuits
because of out of bound memory requirements tae gpoobability transfer matrices
hence we resorted to MC simulations. In most ofdhges we ran 10000 iterations of
MC simulations where each input changed with thebability of 0.5. In the case of
higher input count we ran up to 1M iterations td gere accurate results, but the
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execution times reported if"4olumn of Table 1.8 are for 10000 iterations ichea
case. Since overall circuit reliability for multugput circuits tend to be very low we
also report BDEC calculated minimum output relidgpifor single output in the last
column of Table 1.8.

Table 1.8 BDEC Circuit Reliability Compared to MC Simulatiofer Large Benchmark Circuits

MC BDEC Min
# of Exec Exec MC BDEC % Single
Benchmark POs : . Reported Reported
Gates Time | Time | o fianility | Reliability | E'7O" | _Output
(sec) (u sec) Reliability
majority 22 1 0.25 2244 0.6616 0.6994 5.71 0.6994
decod 66 16 0.69 6234 0.2159 0.2120 1.81 0.8820
pcle 71 9 0.82 6899 0.2245 0.2270Q 1.11 0.8401
cordic 116 2 1.26 10093 0.5443 0.5299 2.65 0.7220
sct 143 15 1.54 13086 0.1310 0.130 0.Y6 0.7988
frgl 143 3 1.59 13864 0.5895 0.6135 4.07 0.7822
b9 147 21 1.64 14118 0.0271 0.0261 3.69 0.7223
lal 179 19 2.52 18001 0.0924 0.099Q 7.14 0.806/7
9symml 252 1 2.90 27225 0.7410 0.6189 1648 0.6189
9sym 429 1 4.93 48039 0.7705 0.6398 16|96 0.6398
C5315 2516 123 33.34 267793 0.000d 0.0000 0,00 20.58
Average - - - - - - 5.49 -

1.6 Extensionsto BDEC

1.6.1 Soft Error Rate (SER) estimation using BDEC

As technology scales down, the node-level capamtgwhich is a measure of the
stored charge at the output of the node) and tpelgwoltage decrease, hence, soft
error rates are increasing exponentially [23]. Sofors in CMOS ICs are caused by a
particle (Alpha, energetic neutron, etc.) strikiagnode which is holding some data
value. Soft errors in general result in dischargaoiga node capacitance which in a
combinational circuit means a “1” to “0” transitiofhis type of error is thus different
from Von Neumann error discussed so far in the pafesoft error in SRAM can
change the logic value stored in the SRAM and thas,be thought as a flipping error.

To use BDEC for soft error rate estimation of comaliional logic circuits, we
modify the BDEC equations developed in Section11.3Ve still use the Boolean
Difference Calculus method to find out the condifovhen an error on one or more
inputs will affect the output of the gate. We alsssume a sufficiently large latching
window for a soft error so that such an error aarthe worst case propagate to the
primary output(s) of the target combinational citcin the following, we show the
equations to calculate the soft error rate at ttpuwt of a buffer, a 2-input AND gate
and a 2-input XOR gate. No#g, sorin the following equations means the probability
that a soft error at the output of the gate willsmthe output to transition from logic
“1” to logic “0”.
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To calculate the soft error rate expression abthtput of a buffer, we note that soft
error happens only when the input is “1” and eitbethe input or output is affected.
That is:

gbuf, soft = pln (gin, soft + gg,soft - gin,softgg, soft)

where &, softiS the soft error rate at the input, and the temnthe parentheses is the
probability of error at the input or the output.

To calculate the soft error rate at the output @fiaput AND gate, we pay attention to
the truth table of this gate knowing that soft eran only make “1” to “0” changes.

This leads us to the fact that the only time thatdutput value of a 2-input AND gate is
affected by a soft error is when both inputs aredfid an error occurs at any of the
inputs or at the output. Therefore, the soft erabe at the output of a 2-input AND gate
is written as:

(1.27)

‘91, soft + ‘92,soft + ‘gg,soft

gANDZ,soft = plpz - gl, softgz,soft - gl, softgg,soft - 52, softgg,soft (1.28)

+ gl, softgz, softgg , soft

Similarly, the soft error rate at the output of -sngut XOR gate can be calculated by
looking into its truth table and realizing that thetput value can be affected by a soft
error when: (i) exactly one input is “1” and ongun is “0” and soft error changes the
logic-1 input or the output, or (ii) both inputseafl” and soft error changes one and
only one of these logic-1 inputs. Therefore, thi¢ soor rate at the output of a 2-input
XOR gate is calculated as:

Exore,soft — P1 (1_ P, )(51, soft T €g,sot ~ gl,soft‘sg,soft)
+ (1_ pl) p2 (gz,soft + gg,soft - ‘92, softgg,soft)
+ pl p2 (gl, soft (1 - ‘92, soft) + (1 - gl, soft )‘92, soft)

Similarly we can derive error equations for othgrets of gate functions.

(1.29)

1.6.2 BDEC for asymmetric erroneoustransition probabilities

BDEC for Von Neumann fault model assumed equal gdodity of error for a “0”
to “1” and “1” to “0” erroneous transition. But thimay not always be the case for
example in dynamic and domino logic families, thmdyopossible erroneous transition
during the evaluate mode is from “1” to “0”. In #Hee situations, the solution is to
independently calculate the overall circuit erroolability using the low-to-high and
high-to-low probability values and gate-level errates. Both circuit error rates are
then reported.
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1.6.3 BDEC applied to Emerging Nano Technologies

A guantum-dot cellular automaton (QCA) [21] is adniy logic architecture which
can miniaturize digital circuits to the moleculavéls and operate at very low power
levels [22]. QCA devices encode and process bingrfprmation as charge
configurations in arrays of coupled quantum dather than current and voltage levels.
One unique aspect of QCA is that both wires andggate constructed from quantum
dots. Each dot consists of a pair of electrons tiaat be configured in two different
ways to represent a single bit of information. Hemt QCA both gates and wire are
subject to bit-flip errors. QCAs have two main sms& of error: 1) decay
(decoherence)—when electrons that store informadienlost to the environment, and
2) switching error—when the electrons do not priypswitch from one state to another
due to background noise or voltage fluctuationg.[BDEC uses Von Neumann (Bit-
flip) fault model, hence it is thus well suited ¢alculate errors in QCAs. In QCA
wires/interconnects can also make bit-flip errtvesnce BDEC must be extended to be
used for QCAs. This extension in BDEC is straigitfard and requires a simple
replacement of each interconnect in the circuibwaiprobabilistically faulty buffer.

1.7 Conclusions

As technology scales down circuit reliability iscbening one of the main concerns
in VLSI design. In nano scale CMOS regime circaltability have to be considered in
the early design phases. This shows the need dordhability calculator tools that are
accurate enough to estimate overall circuit reliighiThe presented error/reliability
calculator, BDEC, takes primary input signal andoeiprobabilities and gate error
probabilities and computes the reliability of thecait. BDEC benefits from a linear-
time complexity with number of the gates in thecgit. Compared to PTM which
generates accurate reliability results, BDEC gdrseraighly accurate results that are
very close to PTM ones. We showed that the effyemexecution time and memory
usage, of BDEC is much better than those for PTM.

BDEC can find application in any combinatorial ilmgesign where reliability is a
major concern. Presently BDEC can be applied to booatorial circuits only,
sequential logic is not supported. BDEC can beleasihanced to be applied to
sequential logic. Current version of BDEC uses lleaflapsing to reduce the effect of
re-convergent fanout. In future BDEC can be enhadne use spatial correlations
between the signals to further reduce the inac@samtroduced because of re-
convergent fanouts.
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