Review of the Apollo Testbed Project

Massoud Pedram

University of Southern California Dept. of EE Systems Los Angeles CA 90089

Dec. 4, 2003

- BitsyX versus AT2
- Fine-Grained Dynamic Voltage and Frequency Scaling
- Power Reduction in the Display System
- Wake on Wireless
- Power Management of the Main Memory System

BitsyX versus AT2

BitsyX Platform

Specification

- Intel PXA255 32-bit XScale processor up to 400MHz
- Intel SA-1111 companion chip
- 64MB SDRAM on-board main memory
- 32MB on-board Flash memory
- USB 1.1 host and client functions
- LCD panel interface for GUI
- ADSmartIO for GPIOs
- AC97 codec audio interface

BitsyX Platform (cont'd)

Power consumption

- Running mode (9.4W)
 - PXA255 processor core in turbo mode
 - SDRAM main memory in operating mode
 - SA1111 companion chip in run mode
 - Backlight on
 - LCD panel on
- Sleep mode (480mW)
 - PXA255 processor core in sleep mode
 - SDRAM main memory in self-refresh mode
 - SA1111 companion chip in reset
 - Backlight off
 - LCD panel off

AT2 Platform

With 6.4 inch transmissive LCD panel (LP064V1)

The display system consumes about 52% of the total system power consumption (10.9W)

BitsyX Platform (cont'd)

BitsyX versus AT2

	BitsyX	AT2
Processor	Intel PXA255 Xscale @400MHz	Intel 80200 Xscale @733Mz
Companion chip	Intel StrongARM1111	Xilinx Virtex-E FPGA
Main memory	Onboard 32-bit 64MB SDRAM @100MHz	DIMM 64-bit 128MB SDRAM @100MHz
Flash memory	Onboard 32MB	Onboard 4MB
Frame buffer memory	Shared with main memory	Dedicated 16MB SDRAM
Display	6.4 inch 640x480 18-bit color TFT	10.4/6.4 inch 640x480 18-bit color TFT
Sound	AC97 codec	Crystal CS4630-CM PCI sound card
PCMCIA	1 type I and II	2 type I and II or 1 type III
USB	USB 1.1 host/client	USB 2.0 host
Input device	PS/2 keyboard, touch screen	USB keyboard, USB mouse, touch screen
Note	Not expandable	Expandable using PCI bus
Power consumption	9.4W (Measured, typical)	10.9W (typical with 6.4 inch display)

•Note1: BitsyX power consumption is 9.4W while that of AT2 is 10.9W

- •Note 2: The backlight consumes 6.0W on BitsyX, whereas it consumes 2.7W on AT2
- •Note 3: Performance of the AT2 is two times higher than that of BitsyX

Fine-Grained Dynamic Voltage and Frequency Scaling

Energy and Performance Trade-off

- Dynamic Voltage and Frequency Scaling (DVFS)
 - Energy is saved at the cost of a delay increase
- A program execution sequence consists of CPU and memory instructions
- The CPU has to stall until the external memory access is completed
 - With DVFS, CPU energy is saved with little performance loss

Motivation

Performance degradation at different frequencies

 More CPU energy savings is possible with a given performance loss target for memory-intensive applications

- The amount of CPU and memory workload for an application program must be determined
- Execution time of a program is the sum of the On-chip (CPU work) and the Off-chip Latency (memory work)
 - $\Phi \mathbf{T} = \mathbf{T}_{\text{onchip}} + \mathbf{T}_{\text{offchip}}$
- Tonchip : Varies with the CPU frequency
 - Cache hit
 - Stall due to data dependency
 - ⊕ TLB hit, …
- T_{offchip}: Is invariant with the CPU frequency
 - Access to external memory such as SDRAM and frame buffer memory through the PCI, which is in turn due to a cache miss

Calculating the Target Frequency

• The β value of a program is defined as the ratio of T_{onchip} to $T_{offchip}$ for that program. Given a performance loss factor, the target CPU frequency is calculated as:

$$f_{t \operatorname{arg} et} = \frac{f_{\max}}{1 + PF_{loss} \cdot \left[1 + \beta \cdot \left(\frac{f_{\max}}{f_{cpu}}\right)\right]} \qquad PF_{loss} = 0 \implies f_{t \operatorname{arg} et} = f_{\max} \\ PF_{loss} \uparrow \implies f_{t \operatorname{arg} et} \downarrow \\ PF_{loss} \downarrow \implies f_{t \operatorname{arg} et} \uparrow \\ T_{offchip} \uparrow \implies f_{t \operatorname{arg} et} \downarrow \end{cases}$$

HDOIIO

- Must calculate the β Factor of a program
 - Need to get T_{onchip} and $T_{offchip}$ values
 - T_{onchip} depends on f_{cpu} , n, and CPI_{onchip}
 - \oplus $T_{offchip}$ is calculated from T and T_{onchip}
- Must calculate CPI_{onchip} and T_{offchip}
- Use the Performance Monitoring Unit

Performance Monitoring Unit (PMU)

- PMU on the XScale chip can report up to 20 different dynamic events during execution of a program
 - Cache hit/miss counts
 - TLB hit/miss counts
 - No. of external memory accesses
 - Total no. of instructions being executed
 - Branch misprediction count
 - Data stalls, ...
- However, only two events can be monitored and reported at any given time
- For DVFS, we use PMU to generate statistics for
 - Total no. of instructions being executed (n=INSTR)
 - No. of external memory accesses (m=MEM)
- We also record the no. of clock cycles from the beginning of the program execution (CCNT)

Plot of CPI vs. MPI

- PMU is read at every OS quantum (~50msec)
- We define MPI as the ratio of memory access count to the total instruction count
 - ⊕ CPI^{avg} = CCNT / INSTR, during a quantum
- A plot of CPI^{avg} vs. MPI^{avg} with changing frequency is provided below

 A linear regression equation can be generated for each CPU clock frequency

 Notice that CPI_{onchip} denotes the CPI value without the offchip access; So it is equal to the y intercept of the CPI vs. MPI plot:

We calculate T_{offchip} directly as shown below:

$$T = T_{onchip} + T_{offchip} = CCNT/f_{cpu}$$

$$T_{offchip} = CCNT/f_{cpu} - T_{onchip}$$

Prediction Error Adjustment (I)

Error adjustment

Prediction Error Adjustment (II)

- Target frequency selection
 - without error adjustment

$$f^{t+1} = \frac{f_{\max}}{1 + PF_{loss} \cdot \left[1 + \beta^{t} \cdot \left(\frac{f_{\max}}{f_{cpu}}\right)\right]} \qquad \beta^{t} ! \frac{T^{t}_{offchip}}{T^{t}_{onchip}}$$

with error adjustment

$$f^{t+1} = \frac{f_{\max}}{1 + PF_{loss} \cdot \left[1 + \left(\beta^{t} + \frac{S^{t}}{PF_{loss} \cdot T_{act}^{t}}\right) \cdot \left(\frac{f_{\max}}{f^{t}}\right)\right]}$$

Implementation (I)

- Offchip Latency-driven DVFS (OL-DVFS)
 - Software architecture

- A voltage is mapped to each CPU frequency
- Voltage control circuitry is on-board
- Power measurement with DAQ (Data Acquisition)

CPU Freq. vs. Volt. Relation

Frequency (MHz)	Voltage (V)
333	0.91
400	0.99
466	1.05
533	1.12
600	1.19
666	1.26
733	1.49

Data Acquisition system

Experimental Results (I)

Power consumption vs. performance degradation

without OL-DVFS

with OL-DVFS

Results (II)

 Measured PF_{loss} with a variable performance loss target ranging from 5% to 20%

Results (III)

MPEG2 video playback

Results (IV)

Effect of the error compensation method

OL-DVFS on BitsyX Platform

- PXA255 processor specification
 - ✤ Frequency : 100MHz ~ 400MHz
 - ✤ Voltage : 0.85V ~ 1.3V
- Fewer PMU events compared to the XScale processor
 - MEM is not available
 - Cache miss count can be an alternative
- Lack of information about hardware for DVFS
 - On-board DC-DC converter for variable voltage generator
 - Voltage control scheme using I²C
- Experimental results
 - System power consumption is lower by 144mW at 200MHz compared to that at 400MHz. This is however less than the value of 233mW saving reported in the data sheet
 - Unstable; it sometimes hangs after voltage scaling
- Ongoing work
 - Fine tuning of voltage level without causing any system crash
 - Check the compatibility of Cache miss count for OL-DVFS

Power Reduction in the Display System

Display Architecture

Display Specification

- LCD board specification
 - PCI9054 PCI bridge (PLX)
 - 32bit 33MHz PCI bus interface
 - 32bit 50MHz local bus interface

* XC2S150 FPGA LCD controller (Xilinx)

- Up to 150k gates logic capacity
- SDRAM controller for frame buffer memory
- LCD timing generator for LCD panel signals • Vsync, Hsync, Dtmg and so on
- Backlight brightness controller
 With DAC (Digital Analog Converter)
- K4S1632D SDRAM frame buffer (Samsung)
 - 16MBytes capacity

Display Specification (cont'd)

LCD panel specification

Description LP064V1 (LG-Philips)

- 6.4 inch 640x480 VGA standard resolution
- 260,000 colors (18-bit RGB)
- Transmissive type with CCFL backlight

NL6448BC33-50 (NEC)

- 10.4 inch 640x480 VGA standard resolution
- 260,000 colors (18-bit RGB)
- Transflective type with CCFL backlight

Perceived intensity I by human eyes

 $I = \rho \times L \times Y$

- P : the transmittance of the LCD panel
- L : the luminance of the backlight
- Y: the brightness of the image

DBLS Screen Shots

DBLS (cont'd)

Most of the overhead is caused by

- Heavy frame buffer traffic for frequent frame buffer read
 R/G/B spectrum analysis of the current image on the LCD panel
- Heavy frame buffer traffic for frequent frame buffer write
 - Frame buffer contents updated with the corresponding brightness enhanced image

Hardware-aided DBLS

to the register (Table

fipollo

lookup)

- adjustment with specified brightness scaling ratio
- Automatic backlight luminance control with specified dimmed luminance

Hardware-aided DBLS (cont'd)

Power Consumption Results

Transmissive LCD display system

Power Consumption Results (cont'd)

Transflective LCD display system

DBLS on BitsyX

Display system on BitsyX

- Some portion of the SDRAM main memory is reserved as the frame buffer memory
- DMA controller prefetches the graphics data to periodically refresh the LCD panel
- ADSmartIO AVR processor is used to control the backlight luminance of the LCD panel

DBLS on BitsyX (cont'd)

Our approach

Allocate one more frame buffer area in the memory

- Separate frame buffer areas for the LCD panel and the applications
- Applications update rate of the frame buffer are rather low

Modify frame buffer device driver

- Periodically update the frame buffer area for the LCD panel with luminance scaled image derived from the frame buffer area for application (update frequency in 1-20 Hz range)
- Simultaneously dim the backlight

Power Management of the Main Memory System

- New XScale board's main memory system specification
 - SDRAM specification
 - Four K4S561632 SDRAM chips (Samsung)
 - O 64-bit data bus width
 - o Operating @100MHz

Memory controller specification

- XCV200E FPGA (Xilinx)
 - O Up to 200k gates
 - Operating @100MHz
 - Active-page control for SDRAM devices
- Memory controller is implemented with a FPGA and we can modify its functionality by rewriting and recompiling its VHDL codes

Main Memory Controller

SDRAM state diagram

- When all banks (4 banks) are closed, SDRAM is in the IDLE \oplus state
- When there is any activated bank (open row), SDRAM is in the ACTIVE state
- When memory controller is reading from or writing to SDRAM, SDRAM is in the OPERATING state

Memory controller command

Row activate: Activate selected bank by BA[1:0] **Precharge**: Close selected bank by BA[1:0] or all the banks Column activate: Read from SDRAM or write to SDRAM

Main Memory Controller (cont'd)

Address mapping

Main Memory Controller (cont'd)

Auto-precharge control

- Operation
 - Typical SDRAM access requires a row-address issue followed by a column address issue
 - After a burst access, the controller closes the row
 IDLE → ACTIVE → OPERATING → IDLE
- Advantage
 - Low standby power consumption
- Disadvantage
 - No performance gain

Main Memory Controller (cont'd)

Active-page control

Operation

- After a burst access, SDRAM can remain in the ACTIVE state
 IDLE → ACTIVE → OPERATING → ACTIVE
- If the row address of the next access is equal to the current one (case of a row hit)
 - \bigcirc ACTIVE \rightarrow OPERATING \rightarrow ACTIVE
- Else (case of a row miss), else open row must be closed so that a new row can be opened

 \bigcirc ACTIVE \rightarrow IDLE \rightarrow ACTIVE \rightarrow OPERATING \rightarrow ACTIVE

- Advantage
 - Performance gain due to row-hit if row-hit ratio is over 50%
- Disadvantage
 - High standby power consumption

Power management

Running mode

- W/o the power-down mode enable (Normal)
- W/ the power-down mode enable
 - Sends SDRAM's to power-down state for power-reduction when there is no pending memory request

Self-refresh mode

- For data retention with secondary power source such as a backup battery
- For fast boot support

Memory controller

Main memory device state/power diagram (@3.3V)

- Transition by power management software
- Transition by memory controller
- Memory controller state
- Memory device state

Memory controller state

Running: System is running normally **Self-refresh**: System is disconnected from power source

Memory device state

Idle: All banks are closed.

Active: There is at least one opened bank. Operating: Memory controller is reading data from the bank or writing data to the bank. Idle power down: Memory controller is deasserting CKE (clock enable) signal in Idle state.

Active power down: Memory controller is deasserting CKE signal in Active state. Self-refresh: Memory device is internally performing refresh operation by itself.

Power Consumption Results

 Power consumption of SDRAM devices in the new main memory system

Mode			Power (mW)	Ratio (%)	Note
Self-refresh			13	100.0	
Running	Idle	Normal	83	100.0	
		Power-down enable	26	68.7	
	Busy	Normal	389	100.0	18.0 fps
		Power-down enable	297	23.7	17.8 fps

* Note that previous main memory power consumption always exceeds 1.4W

- Power consumption of main memory controller
 - Intel 80312 memory controller consumes 2.5W
 - New FPGA memory controller consumes 1.0W

DARPA PAKK

Power Consumption Results (cont'd)

Power consumption of the main memory system (Memory controller + SDRAM devices)

When system is idle

When system is busy (MPEG2)

Memory Management in AT2

- Automatic switching between auto-precharge and active-page mode of the memory controller
 - Most row-hit occurs within only a few clock cycles of previous access
 - If the row-hit ratio is above 0.5, we switch to the active-page mode
 - Otherwise, we switch to the auto-precharge mode
 - The row-hit ratio is profiled through the row-hit history window in the FPGA memory controller
- Delayed-precharge mode with automatic threshold timeout value
 - After a burst access, SDRAM can remain in the ACTIVE state for up to specified timeout period
 - According to the row-hit history, the FPGA memory controller dynamically changes the timeout value for issuing the precharge command

Memory Management in BitsyX

APD (Automatic Power-Down) function of BitsyX platform

- If SDRAM's are not accessed, the pxa255 will immediately put the SDRAM's into the power-down mode
- If the SDRAM's are accessed while they are in the powerdown mode, there will be a latency penalty of one memory clock cycle to wakeup the SDRAM's

Kernel module for memory power management

- Disable the APD function when a memory-intensive application is running
- Enable the APD function when a CPU-intensive application is running

Wake on Wireless

Problem statement: The BitsyX system is in its low power, sleep state but the wireless LAN is still kept powered on. When the WLAN receives a data packet addressed to it, it has to wake-up the system while ensuring that no data is lost in this process

BitsyX sleep state definition:

- Processor (PXA 255) in sleep state
 - PXA defines 4 power states turbo, run, idle and sleep
- SA1111 in its reset state
- Most peripherals are turned off (except RTC, ADSmartIO and devices that wake up the system)
- The system is brought out of the sleep state by either one of: RTC, shorting reset pins, a specified set of interrupts managed by the ADSmartIO (keypad, touch-screen)

Wake on Wireless (Cnt'd)

BitsyX architecture

- The wireless LAN is connected to the Compact Flash (CF) slot
- The CF slot is controlled by the SA1111 companion chip

Proposed Solution

- Devise a way to wake up the BitsyX system that has been put in the sleep-mode in response to an incoming packet for the wireless LAN card on the PCMCIA slot. Our mechanism is given below.
 - Initially, the system is in sleep mode. A packet arrives at the wireless LAN card in a PCMCIA slot.
 - The wireless LAN card generates a CARDA_IRQ signal and this signal goes to a pulse generator.
 - The pulse generator converts this signal as a voltage pulse of fixed duration; this pulse is then sent to the CPLD /RQONOFF input pin.
 - The CPLD generates an AVR_WAKEUP signal to the ADSmartIO chip.
 - The ADSmartIO generates a WAKEUP signal to the PXA255 GPIO0 input pin.
 - The PAX255 generates a SA1111_RESET signal to the SA1111.
 - Eventually, the system gets back to the normal mode.

Block Diagram

