

 1

Chang Woo Kang, Ali Iranli, and Massoud Pedram

University of Southern California

Electrical Engineering Department – System

3740 McClintock Ave. EEB-314

Los Angeles, CA, 90089

Abstract — In this paper, we present a synthesis technique

targeted toward coarse-grained, antifuse-based FPGAs. A macro

logic cell, in this class of FPGAs, has multiple inputs and multiple

outputs. A library of small logic cells can be generated from this

macro cell, and used to map the target netlist. First, we calculate

the minimum number of macro logic cells required to map a given

circuit by using either a dynamic programming or a linear

programming technique. Given this minimum number of macro

logic cells, we introduce an interconnect-aware clustering

algorithm that assigns logic cells to individual macro cells so as to

minimize the routing costs. Alternatively, a timing slack-driven

clustering algorithm is presented where timing criticalities of

nodes in a network are calculated and used to determine the final

packing into the macro cells so as to minimize the number of the

macro cells on the critical paths. When compared to results from

a commercial tool, our two synthesis techniques reduce the

number of macro logic cells by 12%, and the maximum depth by

35%, respectively.

Index Terms—Antifuse, Clustering, Coarse-grained, FPGA

I. INTRODUCTION

Field programmable gate arrays (FPGAs) can provide many

advantages over standard cells, in terms of satisfying market

demand while assuring configurability. Fast time-to-market

satisfies industry designers to keep up with newly created

standards, and configurability provides flexible hardware on

demand of both new standards without fabricating a new chip.

FPGAs usually consist of small, configurable basic

elements, connected by rich programmable interconnects [1].

Since routing resources grow faster than on-chip logic

resources, routing resources account for the major portion of

the device’s overall area and delay [2]. In addition, speed and

area-efficiency of an FPGA are directly related to the

granularity of its logic block [3]. While coarse-grained blocks

have long internal logic delays, they can reduce the placement

and routing stress by having fast local routing and significantly

reduce external routing. Typically, synthesis tools prefer “gate

array-like” fine-grained architectures; however, fine-grained

FPGA architectures generally yield a very poor performance

due to the long delays resulting from building functions, with

multiple levels of gates and slow interconnect elements.

Coarse-grained architecture gives the tools the needed degrees

of freedom for the high logic utilization benefits of a

fine-grained architecture, without sacrificing the high

performance benefits of coarse-grained, high fan-in

architecture. Recently, FPGA manufacturers have introduced

coarse-grained architectures. Examples of such devices are the

pASIC3 [6], the Xilinx Virtex [7], and the Apex and Flex from

Altera [8].

Metal

SiO2

Metal

SiO2

Via

Antifuse

SiO2

(b)

(c)

(a)

mux2

mux3

mux4

mux1

pASIC3

Logic
cell

In
p

u
ts

 a
n

d

o
u

tp
u

ts

Interconnect

switches

Fig. 1. Coarse-grained, antifuse-based FPGA: (a) pASIC3

logic cell, (b) architecture, and (c) antifuse switch.

Coarse-grained, antifuse-based FPGAs have emerged as a

promising technology for limited space, high speed, and low

power. The architecture consists of interconnects, antifuse

switches, and programmable logic cells as shown in Fig. 1(b).

Fig. 1(a) shows a coarse-grained, antifuse-based pASIC3 logic

cell, which has 26 inputs and four outputs. The function of the

logic cell is determined by the logic levels applied to the inputs

of the AND gates and multiplexers. The high logic capacity and

wide fanin of the logic cell accommodate many user functions

with a single level of logic delay. Because the architecture

provides tremendous flexibility, with small hardware

overhead, coarse-grained, antifuse-based FPGAs demands

A Synthesis Approach for Coarse-grained, Antifuse-based

FPGAs

Copyright (c) 2006 IEEE. Personal use of this material
is
permitted. However, permission to use this material
for any other purposes must be obtained from the
IEEE by
sending an email to pubs-permissions@ieee.org.

 2

highly intelligent CAD algorithms.

Antifuse-based FPGAs are one time programmable logic

devices. The antifuse is initially in a high impedance state and

is transformed into a low impedance metal-to-metal link when

programmed. Fig. 1(c) illustrates the cross-sectional view of

the antifuse programming technology. The antifuse element is

formed by depositing a high resistance layer (> 1GΩ) of

amorphous silicon above a tungsten via a plug that would

otherwise bridge the insulation between the two metal layers.

When a programming voltage is applied to a selected via, a

direct metal-to-metal link is formed by permanently

transforming the silicon to a low resistance state. A typical

resistance for a programmed connection is about ~30 Ω. The

size of the programmed link is physically smaller than that of a

via. The small size of the interconnect coupled with the high

dielectric constant of the via material ensures that

unprogrammed links exhibit capacitive loading < 1fF [6].

Clustering refers to the task of grouping logic gates in the

circuit netlist and assigning each group to a configurable logic

block in the FPGA array (in the case of our target architecture,

this means packing gates into pASIC3 logic cells). Circuit

clustering is an important technique for coarse-grained FPGAs.

First, clustering can reduce the complexity of large circuit

designs by a significant factor. Second, clustering can improve

the quality of the results of other operations such as placement

and routing

In this paper, we present area-driven clustering techniques

with considerations given to the routing complexity of

inter-cluster interconnects and the delays in terms of the

number of pASIC3 logic cells on critical paths. Although we

target a specific logic cell architecture, e.g., pASIC3 FPGA,

our method can be applied to similar type of coarse-grained,

antifuse FPGAs with slight modification. For example,

QuickLogic has recently launched new coarse-grained antifuse

FPGA devices, named Eclipse II and PolarPro, which have a

complex logic description and architecture. Our techniques can

be easily modified to target these coarse-grained antifuse

FPGA devices.

We extract library cells from the pASIC3 logic cell and

then mapped a network. After technology mapping, we

calculate the minimum number of macro logic cells, which is a

lower-bound, to cover the network by either dynamic

programming or linear programming. Then, we cluster network

by using the minimum number of available pASIC3 logic cells

with considerations of interconnect and delay. The goal of the

interconnect-aware clustering is to minimize the number of

inter-cluster interconnects, while, for slack timing-driven

clustering, we minimize the number of logic cells on the critical

paths.

A preliminary version of this work appeared in [4][5].

These papers presented different ways of computing the

minimum number of macro logic cells and an algorithm for

doing performance-driven clustering with node replication.

The present manuscript unifies the findings of [4][5] and

extends them by describing clustering algorithms targeting the

minimum number of inter-cluster interconnections and the

minimum number of macro logic cells on the critical paths

without any logic replication. New results and discussions are

added to support these extensions.

This paper is organized as follows. In Section II, a brief

background on clustering techniques for FPGAs is provided.

We present the proposed CAD tool flow and the procedure for

creating a library set in section III. The lower-bound

calculation algorithm for the minimum number of logic cells is

presented in section IV. The area-driven clustering algorithms

with interconnect awareness and delay optimization, are

presented in section V. In section VI, the experimental results

are provided. Finally, we conclude in section VII.

II. BACKGROUND

FPGAs have clusters with basic logic elements (BLEs) and

those BLEs are ready to be programmed to implement specific

functions. Therefore, the technology mapping locates a

feasible portion of circuits and implements the functions of that

portion into those BLEs. For two different types of FPGAs,

various mapping techniques have been developed. Cong and

Ding developed FlowMap [9] that guarantees to produce

depth-optimal mapping solutions. An extensive survey of

existing SRAM-based FPGA mapping techniques is provided

in [10]. For antifuse-based FPGAs, Boolean matching

techniques have been used for technology mapping and those

research results on technology mapping for antifuse logic cells

have been reported in [11]. Boolean matching is therefore a key

enabler for antifuse-based FPGA mapping. Lai et al. in [12]

proposed a Boolean matching algorithm and introduced

matching filters for speedup. A more comprehensive review is

provided in [13].

Clustering techniques for two different technologies,

SRAM and antifuse, are also somewhat different.

SRAM-based FPGAs have logic clusters, each of which

consists of multiple BLEs. Clustering BLEs have typically two

constraints: the number of BLEs in a logic cluster and the

number of inputs of a logic cluster. On the other hand,

clustering gates for an antifuse-based logic cell means that all

gates in a cluster must be able to realize functions completely

within a logic cell, which is pASIC3 in this research. Since it is

too difficult to map a network with multiple output logic cells,

the macro logic cell must be divided into small base gates and

library cells are generated from those base gates. After

technology mapping, the library cells must be packed to fit the

macro logic cell. Therefore, the constraint for packing is more

stringent.

As far as we know, there is not any prior work on

clustering techniques targeting coarse-grained anti-fuse

FPGAs and that is why our discussion of the prior work will

 3

focus on clustering algorithms for SRAM-based FPGAs, from

which we have borrowed some concepts and ideas.

Clustering techniques for SRAM-based FPGAs have been

evolving [13]-[18]. The algorithms have relied on good seed

selection and smart gain functions to evaluate the gain of

absorbing a neighbor node according to their objectives. The

RASP [13] is a general synthesis and mapping system for

SRAM-based FPGA. The clustering algorithm is based on a

sequence of maximum weighted matching operations on a

compatibility graph, which yields the proper grouping of LUTs

into programmable logic blocks (PLBs). For each step, a

compatibility graph is formed in which vertices represent the

partial PLBs (initially LUTs) that will be considered for

grouping at this step. An edge is formed between two vertices,

if the two corresponding partial PLBs can be grouped into one.

Then, weights are assigned to edges to guide the matching

algorithm to select the best merging of partial PLBs. VPACK

[15] is a clustering algorithm to minimize both the number of

logic clusters and the number of used inputs to each cluster.

Minimizing used inputs for each cluster is important to develop

a routable design. The algorithm constructs each cluster

sequentially. First, a seed BLE is chosen, which has the most

used inputs among the currently unclustered BLEs. The inputs

are a scarce resource. Thus, VPACK greedily selects the BLE

that shares the most inputs and outputs with the cluster being

constructed.

T-VPACK [16] is based on VPACK algorithm [15]. Its

optimization goal is minimizing the number of external

connections (connections between clusters) on the critical path.

Since the external cluster routing delay is much larger than the

local routing inside a cluster, minimizing the number of routing

on critical paths can improve delay significantly. The algorithm

consists of two steps: static timing analysis and clustering.

During the static timing analysis step, criticalities of

interconnects are computed. During the clustering phase,

selecting a seed BLE and attracting BLEs take place. The seed

BLE is unclustered but has the most critical connection in the

circuit. RPACK [17] is a routability-driven packing algorithm,

which first identifies routability factors, prioritizes these

factors into an improved clustering cost function. The beauty of

iRAC is that it [18] packs closely connected components

together, achieves spatial uniformity in the clustered design

using Rent’s Rule [23], and reduces the external routing

requirement in clustered FPGAs. It alleviates routing

congestion for clustered FPGAs by absorbing as many small

nets into clusters as possible, and depopulating clusters

according to Rent’s rule in order to achieve spatial uniformity

in the clustered netlist.

FPGA
cell

library

Cell Library
generation

(SIS, PERL, C) Standard

technology
mapping

(SIS)

FPGA
Config.

Lib.

0

0

0

0

0

Input design netlist

FPGA netlist

Placement
&

Routing
(VPR-pASIC3)

Logic synthesis
(SIS)

Cell Clustering

(Packer-pASIC3)

Fig. 2. Proposed synthesis flow for pASIC3 family FPGA.

1

(a) base-gate A

(b) base-gate B (c) base-gate C

(d) base-gate D

1

1

1

1

Fig. 3. Base gates extracted from pASIC3 logic cell.

A. Notation

 To improve readability of this paper, we summarize the

notation used throughout the paper in the following table.

SAD set of library cells that can be

 4

realized by personalization of either

base-gate A or base-gate B

S collection of sets of primitive cell

types i.e., {SAD, …, SABCD}

M number of distinct pASIC3 logic

cell embeddings (configurations for

filling a pASIC3 cell by primitive

cell types)

qi number of embeddings of type i

utilized in a mapped network

Ci,Sj number of type Sj primitive cells in

the i
th

 embedding

mSj number of the primitive cells of type

Sj utilized in a mapped network

nA number of base-gates A in a mapped

network

NpASIC3 number of pASIC3 logic cells

needed to cover a network

2A+2B, 2A+C,

A+B+D

cluster types according to the

number of base gates in a cluster

n2A+2B number of type 2A+2B clusters

c(u,b) local connectivity factor of node u

for a base gate realization of type b

Pd(u) number of free nodes within

topological distance d from node u

Nd(u,b) number of absorbable nodes within

distance d from node u for a base

gate realization of type b

G(L,u,b) gain value for merging node u that is

realized with base gate b into cluster

L

r(x) number of pins on net x

αL(x) number of pins of net x that are

already inside cluster L

Nets(L) Nets connected to nodes within

cluster L

crit(u) timing criticality of node u

slack(u) timing slack of node u

E(yj,L) set of neighboring nodes of node yj

in cluster L

maxNC(yj,L) the maximum criticalities of any

node in N(yj,L)

minNC(yj,L) the minimum criticalities of any

node in N(yj,L)

III. TOOL FLOW AND CELL LIBRARY

CONSTRUCTION

Fig. 2 shows our CAD tool flow for pASIC3 family FPGAs.

We generate a cell library and configuration information from

the pASIC3 logic cell. A target circuit is synthesized by SIS

[20] and then the circuit is mapped by cells in the cell library.

Our clustering tool called Packer-pASIC3 packs nodes mapped

by library cells into clusters. A cluster is assigned to a pASIC3

logic cell. VPR [25] places and routes the clustered network

with the architecture description of pASIC3 family FPGAs.

Mapping multiple output logic with large fanin inputs is

very expensive in terms of the memory requirements and

computational complexity, and the number of gates that may be

generated from the pASIC3 logic cell by assigning 0 or 1 to its

inputs (i.e., connecting inputs to either VDD or GND levels) is

quite large. Therefore, we break the pASIC3 logic cell into

manageable sub-blocks at the expense of not exploiting the full

flexibility/programmability of the larger block. By

appropriately connecting the control inputs of the four

multiplexers (cf. mux1 through mux4 in Fig. 1) to zero or one

logic levels, four base gates (A, B, C, and D) can be obtained

as shown in Fig. 3.

A
B

C

D

S
D

S
AD S

ACD
S

ABCD
S

BCD
S

CD S
C

Fig. 4. Venn’s diagram of for the set of logic cells that can

be personalized from base gates.

After deriving the base gates, cell generation is performed

for each base gate. Cell personalization is done either by

assigning constant 1 or 0 to some of the inputs or by

connecting some of the inputs together (bridging.) By applying

all possible combinations of these two operations to a base

gate, a large number of library cells can be generated. We call

these personalized cells “primitive cells”. However, some of

the primitive cells generated from different base gates will have

identical Boolean function. In fact, we can draw a Venn’s

diagram to depict the set relationship among the primitive cells

that are generated from different base gates, as depicted in Fig.

4. There are seven different primitive cell types, SAD, …, SABCD.

SAD denotes the set of library cells that can be realized by

personalization of either base-gate A or base-gate D. Other

primitive cell types are similarly defined.

Table I Cell type distribution.

Type

set
SAD SACD SBCD SC SD SCD SABCD

Cells 3 5 20 714 110 28 6

Note that the total number of primitive cells is more than

5,000. Using all of these primitive cells results in high cpu time

and memory usage during the FPGA mapping process, and

should thus be avoided. To limit the number of primitive cells

that tend to be useful in practice, we performed the following

experiment. We selected thirteen circuits from the MCNC91

benchmark suite and mapped each circuit to the full set of

 5

primitive cells. Next we counted the number of times that each

primitive cell was utilized as a match for an intermediate node

of the technology decomposed Boolean network during the

mapping process. We noticed that 886 primitive cells were

matched at some node at least once i.e., more than 4000

primitive cells were never used during the mapping process for

these benchmark circuits. These primitive cells tended to be

complex (multiple inputs and large number of literals in their

factored forms.) So for the sake of improving the

computational efficiency and reducing the memory usage of

the mapper, we opted to keep only this set of 886 primitive

cells. Note that the selected primitive cells include almost all of

the standard cells in a typical ASIC library. Table I shows the

cell distribution of those selected primitive cells.

IV. LOWER-BOUND CALCULATION

In this section, we provide an algorithm to find the minimum

number of pASIC3 logic cells to cover a mapped network.

A. Problem Statement and Dynamic Programming

Once a mapped netlist is generated after technology mapping,

we must solve the problem of clustering the primitive cells used

in the mapped netlist into the pASIC3 logic cells. Since the

mapping is performed before placement and routing, detailed

physical information is not available. In addition,

antifuse-based FPGAs have relatively rich routing resources

since routing switches are abundant and many layers of metal

wires can cross over the pASIC3 logic cells [1]. Thus, we have

opted to minimize the total area taken by the pASIC3 logic

cells during the initial clustering step.

Problem 1: Given a mapped netlist comprised of primitive

cells, find the minimum number of pASIC3 logic cells that can

realize the network.

There are seven different primitive cell types, SAD, …,

SABCD, as defined in Fig. 4. Looking at Fig. 1(a), it is easy to see

that base gates may conflict with one another in the sense that

they cannot be packed together in the same pASIC3 logic cell.

For example, base-gates B and C cannot be packed together in

one pASIC3 cell. There is thus a fixed number of ways to

embed (pack) a number of these primitive cells into one

pASIC3 logic cell. For example, two type-AD primitive cells

and two type-BCD primitive cells can be packed in a single

logic cell by using two base-gate A’s and two base gate B’s.

Alternatively, two type-AD primitive cells and one type-C

primitive cell can be packed in one pASIC3 logic cell by using

two base-gate A’s and one base-gate C. Any such embedding

(out of M possible embeddings) gives rise to the following

equation:

, 1,...,
ji i S

j S

LC C i M
∈

= =∑ (1)

where S is the collection of sets of primitive cell types, {SAD,

…, SABCD}, and Ci,Sj is the number of type Sj primitive cells in

the i
th

 embedding.

The packing problem can be restated as follows. Given M

configurations of filling a pASIC3 logic cell by primitive cells

derived from the base gate types and a netlist of cells generated

by the mapper, find the minimum number of logic cells that

cover all cells in the netlist.

Let mSj denote the number of the primitive cells of type Sj

in a mapped network. For example, mAD is the number of

type-AD primitive cells. The problem can be restated as:

1

,

1

. . :
j j

M

i

i

M

j i i S S

i

Minimize q

s t S S q C m

=

=

∀ ∈ ⋅ ≥

∑

∑

(2)

where qi is the number of embeddings of type i in the mapped

network. This is the same problem as the well-known coin

change problem as defined next.

Coin Change Problem: Let c1, c2, ... cq be the coin types of a

currency. Let Ci denote the value of coin ci in cents and K be

some integer. We assume C1=1. The problem is to produce K

cents of change by using a minimum number of coins. The

recursive expression for the solution can be

[] []
:

0 0

min 1 0
i

ii C K

if K
cnt K

cnt K C if K
≤

=
=  − + >


 (3)

where cnt[K] is the minimum number of coins for K cents. We

can compute the optimal solution to the coin change problem

by using a bottom-up approach. By solving the optimal

solution for values smaller than K, we can find the optimal

solution for the exact amount of K by referring to the optimal

solutions of the previously solved sub-problems. The running

time complexity is O(qK).

To formulate the cell-packing problem, we must extend

the coin change problem. First, instead of a single amount K,

there will be seven different amounts, each of which is the

number of primitive cells in the mapping solution that are in

each of the seven base sets, SAD thru SABCD. The recurrence

equation for this problem is written as follows:

()

()(), ,

,...,

0 : 0

min , ..., 1

j

AD ABCD

AD ABCD

j S

AD i S ABCD i Si

cnt m m

if S S m

cnt m C m C otherwise
∀

=

∀ ∈ ≤



− − +

(4)

The complexity of the corresponding dynamic

programming algorithm is:

jS

j U

O mM
∈

 
 
 

⋅∏
.

B. Set containment relations

Base gates can be put into two classes: simple and complex

base gates. A complex base gate is one that consists of multiple

base gates and internal multiplexers, while a simple base gate

cannot be composed by other base gates. Base-gates C and D

 6

are complex, whereas base-gates A and B are simple. The

inclusion relationship between these base-gates is expressed as

follows:

basegate basegate

basegate basegate

basegate basegate

B C

B D

A D

⊂

⊂

⊂

(5)

Notice that when both a simple base gate and a complex

base gate can implement a primitive cell, the simple base gate

will be selected for realizing the function of the primitive cell.

Realizing the function by the complex base gate not only

wastes area of the pASIC3 logic cell but also needlessly

increases the circuit delay. Therefore, we can safely state that

base-gates C and D are inferior to base-gates A and B when

they implement the same logic function.

C. Minimum number of pASIC3 logic cells

Given the number of base gate types needed for mapping a

circuit, the key question is how many pASIC3 logic cells are

required to contain all of the base gates. There are three types

of pASIC3 embeddings (clusters) i.e., 2A+2B, 2A+C, and

A+B+D. A type 2A+2B pASIC3 logic cell is defined as the

pASIC3 logic cell that has two base-gate A’s and two base-gate

B’s in it. Other types can be defined similarly.

Theorem 1: Let nA denote the number of base-gates A in a

mapped netlist. nB, nC, and nD are similarly defined. The

minimum number of pASIC3 logic cells NpASIC3 needed to

implement a mapped netlist containing nA, nB, nC, and nD

base-gates can analytically be calculated as follows:

3 2 2

2

2

(,)

2
2

2

0

2

0

= + +

− −
+ ≥

= 


−
≥

= 


pASIC A B C D

A C D
A C D

A

B D
B D

B

N MAX N N n n

n n n
n n n

N

otherwise

n n
n n

N

otherwise

(6)

Proof: Base-gates C and D cannot be packed together while

base-gates B and C cannot be packed together. Therefore, the

number of type 2A+C pASIC3 logic cells is equal to the

number of base-gate C’s. Similarly, the number of type

A+B+D pASIC3 logic cells is equal to the number of base-gate

D’s. The number of type 2A+2B pASIC3 logic cells is

determined by dividing the maximum number between the

number of base-gate A’s and base-gate B’s. However, a type

2A+C pASIC3 logic cell can pack two base-gate A’s as well as

one base-gate C. Thus, the actual number of base-gate A’s for

type 2A+2B pASIC3 logic cells must be calculated by

subtracting the number of base-gate A’s, which have been

packed by type 2A+C and A+B+D pASIC3 logic cells, from

the original number of base-gate A’s. Similarly, the actual

number of base-gate B’s for type 2A+2B pASIC3 logic cells

can be calculated. Finally, the total number of pASIC3 logic

cells becomes the sum of all three type pASIC3 logic cells.

 �

D. Type distribution table

Theorem 1 can be used to significantly simplify the problem.

After technology mapping, we count the number of primitive

cells of specific types. The problem can be restated follows.

Problem 2: Given a primitive cell library generated from the

pASIC3 logic cell structure and a mapped network comprising

the primitive cells, we want to find the best choices of base

gates A, B, C and D for realizing all of the primitive cells in the

network so as to minimize the number of required pASIC3

logic cells.

Note that after the base gate counts are known, the

minimum number of logic cells can be computed

straightforwardly based on Theorem 1.

Table II

The type distribution table for primitive cell to base-gate

mapping

of Base-gate types # of primitive

cell types A B C D

mAD mAD 0 0 0

mACD x 0 mACD – x 0

mBCD 0 mBCD 0 0

mD 0 0 0 mD

mC 0 0 mC 0

mCD 0 0 mCD –y y

mABCD z mABCD – z 0 0

Table II shows how a primitive cell of type Γ in the

mapped network is realized with a base gate of type A, B, C, or

D. Notice that many of the primitive cell types have a unique

realization in a single base-gate type. Examples include types

BCD of primitive cells. Note that a type BCD primitive cell

should be realized only using type B base gates because of the

inclusion relationship of (5) and the fact that complex

base-gates are always more costly than the corresponding

simple base gates. Three of the primitive cell types, however,

can be realized by using either of two base gates. For example

type ACD primitive cell can be realized as either type A or type

C base gate. This table shows that, to solve problem 2, all we

have to do is to determine variables x, y and z where x denotes

the number of primitive cells of type ACD that are realized as a

type A base gate, y denotes the number of primitive cells of

type CD that are realized as a type D base gate, and z denotes

the number of primitive cells of type ABCD that are realized as

a type A base gate.

Problem 3: Given the occurrence count of different primitive

cell types in a mapped network, find the values of variables x, y

and z so as to minimize the number of pASIC3 logic cells

required to cover the network.

 7

E. Linear programming formulation and solution

We formulate Problem 3 as a linear programming problem and

then obtain the optimal solution by finding either the minimum

point of an intersected plane of two equations [22] or the

minimum point of an equation that is always above the other

within certain ranges of variables. Equation (6) can be restated

as in (7).

(){ }

()

()

() ()

3 max (, ,), (, ,)

0 ;0 ;0

1
,

2

2 3 0

,

1
,

2

pASIC ACD BCD

ACD CD ABCD

AD D

ACD AD ACD C CD D

D ACD C CD

BCD ABCD D ACD C CD

BCD BCD ABCD D

N MIN N x y z N x y z

x m y m z m

m x z m y

N if m m m m m x y z

m m x m m otherwise

m m z m y m x m m

N if m m m

=

≤ ≤ ≤ ≤ ≤ ≤


+ + + +


= − + + − + + + ≥
 + − + +



+ − + − + − + +

= + − 0

,
D ACD C CD

y z

m m x m m otherwise





− − ≥
 + − + +



(7)

The brute-force algorithm is to search for the optimal

solution by trying out every possible combinations of x, y, and

z within their allowed ranges (0 ≤ x ≤ mACD, 0 ≤ y ≤ mCD,

0 ≤ z ≤ mABCD). The computational complexity, however, is

()× ×
ACD CD ABCD

O m m m , which can be quite high. Fortunately,

equation (7) has an important property that allows us to speed

up the search: As x, y, and z increase, NACD increases but NBCD

decreases. Therefore, within allowed ranges of x, y, and z,

equations for NACD and NBCD may intersect in a plane or one

equation is above the other all the time. We explain the solution

for the two cases as follows.

Case 1: When NACD and NBCD intersect in a plane, at the

intersected plane, NACD and NBCD become equal:

() () (), , , , , , 0= − = + + + =
ACD BCD

F x y z N x y z N x y z ax by cz d (8)

where a, b, c, and d are coefficients of an equation of a plane

after the subtraction. All points in this plane guarantee that

logic cells are full because NACD and NBCD are equal but

choosing one arbitrary point on the plane may not give the

optimal solution. Therefore, we need to find the point that gives

the optimal solution in this plane. Notice that we should

consider only points on the plane within the specified ranges

for x, y, and z. Further more, we need to check only corners of

the plane because of the property of NACD and NBCD mentioned

above.

Case 2: NACD and NBCD may not intersect at all, resulting in

one equation lying above the other in the ranges of x, y, and z.

In this case, simply, two points are evaluated: (x=0, y= 0, z = 0)

and (x = mACD, y = mCD, z = mABCD). If NACD is larger than NBCD

at x=0, y= 0, and z = 0, NACD(x=0 , y= 0, z = 0) is the minimum

solution. Otherwise, NBCD (x = mACD, y = mCD, z = mABCD) is the

minimum solution.

The worst case of the above algorithm is when it requires

checking all of the candidate points. Those candidate points

can be enumerated by setting minimum or maximum values to

variables except one variable. Therefore, the complexity is
1(2)kO k −⋅ where k is the number of variables. In this case, k=3.

Notice that the computational complexity of this algorithm is

independent of the network size.

From the optimal distribution of primitive cells, we can

easily find out what kind of logic cells and how many of those

logic cells are required. Notice that there are only three types of

clusters (embeddings): 2A + 2B, 2A+C, and A+B+D. nA

indicates the number of base-gate A required from the optimal

distribution of primitive cells. Likewise, nB, nC, and nD can be

computed by adding numbers for each column in Table II as

followed:

= + +

= + −

= − + + −

= +

A AD

B BCD ABCD

C ACD C CD

D D

n m x z

n m m z

n m x m m y

n m y

 (9)

The numbers of logic cells for different cluster types

(nA+B+D, n2A+C, n2A+2B), can be computed by the following

equations:

()

()

2

2

2 2

2

max ,
2 2

+ +

+ +

+ +

+

+

+

= +

= + + −

= + − −

= − + + −

= −

    
=         

A B D D

A AD A B D

B BCD ABCD A B D

A C ACD C CD

A A A C

A B
A B

n m y

n m x z n

n m m z n

n m x m m y

n n n

n n
n

(10)

Knowing the numbers of logic cells for each cluster type

can be used to guide algorithms to achieve small area. We use

this information as area constraints to build a clustering

solution.

V. THE CLUSTERING TECHNIQUE

In this section, we present a cell clustering technique that

considers both interconnect connectivity and circuit delay. The

algorithm improves routability and delay under the constraints

of the minimum number of pASIC3 logic cells for a given

circuit.

Knowing the minimum number of pASIC3 logic cells is

not sufficient information to enable us to assign mapped nodes

into the pASIC3 logic cells. In other words, we can calculate

the minimum number of clusters of different types required for

a circuit by using the algorithm described in the previous

section. However, that algorithm does not produce a complete

clustering solution because it does not take into account the

connectivity between nodes in the circuit. There are two facts

worth mentioning again. First, nodes that are mapped to a

 8

certain primitive cell type can only be realized by a limited

number of different base gates; second, there are upper-bounds

on the number of different types of clusters, i.e., nA+B+D, n2A+C,

and n2A+2B. We refer to these two conditions as resource

constraints for a circuit. Therefore, when we create a new

cluster, we have to ensure that the resource constraints are not

violated.

A. Interconnect-aware Clustering

Since the routing area is one of the primary goals, we propose a

heuristic algorithm of interconnect-aware clustering algorithm.

The problem can be stated as follows:

Problem 4: Given a network mapped to primitive cells and the

number of different cluster types specified for the packing

solution with the minimum number of pASIC3 logic cells, find

a clustering solution that has the minimum number of

inter-cluster interconnects.

A wire connecting two un-clustered (free) nodes that can

be packed together is called an absorbable wire. When an

absorbable wire connects node u with some free node x, then

we say that node x is an absorbable node with respect to node

u. Considering conflicts between base gates in a pASIC3 logic

cell, and motivated by [25], we define a local connectivity

factor of node u for a base gate realization of type b as follows:

(),
(,)

()

d

d

N u b
c u b

P u
= (11)

where Nd(u,b) is the number of absorbable nodes within

distance d of node u for a base gate realization of type b

whereas Pd(u) is the total number of free nodes within

topological distance d from node u. Higher local connectivity

factor, c(u,b)≤1, for a node u of base gate type b signifies that

more absorbable nodes are located in the node’s neighborhood

and/or that the number of nodes in its neighborhood is small.

Fig. 5(a) and (b) show examples of calculating local

connectivity factors for n3 assuming no cluster has been yet

formed and for d = 1. For example, in Fig. 5(a), P1(n3)=4 while

N1(n3,B)=4 since all nodes connected to n3 are compatible with

base gate type B. Consequently, c=1.

In Fig. 5(c), node n5 is non-absorbable with respect to n3

because its base gate conflicts with base gate type B assigned to

n3. Therefore, P1(n3)=4 while N1(n3,B)=3 and c=0.75. Fig. 5(c)

depicts a case in which node n3 has two possible base gate

realizations e.g., A or B. As a result, two connectivity factors

must be calculated for each base gate as were done for Fig. 5(a)

and (b). From this example, it becomes clear that each node

may have different connectivity factors corresponding to

different base gate realizations.

AB

B

A

AB

C

AB

B

A

AB

AB

AB

AB

A

AB

C

(c)

(a)

(b)

c = 1

c =0.75

n1

n2

n4n3

n1

n2

n4n3

n1

n2

n4n3

n5

n5
n5

Fig. 5. Examples of local connectivity factor computation.

We propose a heuristic, interconnect-aware algorithm.

Clustering is done in two steps. In the first step, the local

neighborhood connectivity factor, c, for each base gate

realization of each free node in the network is computed and a

free node that has the highest local connectivity factor is

chosen as a seed for a new cluster. Next, the type of the new

cluster (and if the seed node admits different base gate

realizations, the base gate type of the seed node) is determined

based on the availability of compatible cluster types for the

seed node i.e., a cluster type that is compatible with the base

gate type of the seed node and has the highest availability is

chosen. For example, with base gate type B for n3, a cluster

type of 2A+2B may be chosen in Fig. 5(a) and (b) whereas a

cluster type of 2A+C and a base gate type of A for n3 may be

chosen in Fig. 5(c). Once the type of the cluster is determined,

the number of available clusters for the type is reduced by one

and an absorbable node which is compatible with the selected

cluster type and has the highest affinity toward the cluster is

packed into the cluster (see below.) The process is continued

until no further clustering can be performed or no free node

remains in the network.

Notice that the above heuristic for seed selection may be

improved by considering the composition of the base gate

types of the neighbors of the seed node.

D

B

A

AB

C

net1

net2

net0

L

X

Z

Y

Fig. 6. Example of packing a new node into a partially

formed cluster.

The degree of a node’s affinity toward a cluster may be

quantified by a gain function. Motivated by [18], given a

 9

partially formed cluster L and a merging candidate node u with

base gate realization b, the gain of packing u into L is

calculated as follows:

() ()

0 if cannot be merged into

(, ,) 1 ()
otherwise

()

L

x Nets L Nets u

u L

G L u b x

r x

α

∈ ∩




≡ +



∑

(12)

where Nets(L) and Nets(u) refer to the set of nets connected to

nodes inside L and to u, respectively. αL(x) denotes the number

of pins of net x that are already inside cluster L and r(x) is the

number of pins of net x.

Fig. 6 depicts an example of gain calculation. Notice that

net2 cannot be absorbed into cluster L because the cluster type

of L is either 2A+2B or A+B+D, and node Z of base gate type

C is not compatible with either cluster type. Therefore, either

node X or node Y will be merged into L. If we consider only the

gain, node Y must be packed into cluster L because it has

higher gain than node X. However, we also have to ensure that

the resource constraint is satisfied. For example, when we

choose node Y with base gate A or B, the cluster type of the

new cluster becomes 2A+2B. If there is no available pASIC3

logic cell of type 2A+2B, node Y cannot be packed into cluster

L. Instead, assuming that there is an available cluster of type

A+B+D, node X will be placed into cluster L.

At the end of the process described above, we may be left

with a situation in which all available pASIC3 logic cells have

been partially utilized, yet there are still un-clustered nodes.

This is possible, for example, when an unfilled cluster cannot

find a new node to bring in because all of its neighboring nodes

have already been assigned to some other cluster, or all of its

free neighbor nodes have resource conflicts with nodes that are

already in that cluster. From our experiments, on average 20%

of the nodes in a circuit are not clustered at the end of the

clustering procedure described above.

To address this issue, we pack the remaining free nodes

into unfilled clusters by using a linear assignment procedure as

follows. We place the complete netlist composed of the (filled

and unfilled) clusters and the free nodes by using a VPR

high-temperature simulated annealing placer [25]. We can thus

calculate the Euclidean distances between the unfilled clusters

and the free nodes based on the placement result. Finally, we

set up a linear assignment (bipartite graph matching) problem

where on one side are the free nodes and on the other side are

the unfilled clusters. An edge exists between a free node and an

unfilled cluster if the node is absorbable into that cluster (e.g.,

it has compatible base gate type with respect to the unfilled

portion of the cluster type.) The edge weight is set to the

Euclidean distance between its two end points. This problem is

solved optimally and in polynomial time using linear

assignment solvers.

D

A

C
B

A

C

A
A

A

B

B
A

n1

L1

L4
L 3

L 2

AB

AB

A

A

A

B

A

AB

A

n2

n3

L3

L4

n1

n2

n3

AB

Un-clustered nodes Available base gates in clusters

(a)

(b)

Fig. 7. Packing un-clustered nodes by using linear

assignment: (a) partially clustered network; (b) bipartite

graph for linear assignment.

Fig. 7 shows an example of transforming the partially

clustered network into a bipartite graph for linear assignment.

Notice that node n3 cannot be clustered into L3 because n3

needs a type-A base gate mapping, which is not available in L3.

On the other hand, since a type-AB primitive cell can be

implemented either by a base-gate A or by a base-gate B, nodes

n1 and n2 can be clustered into either L3 or L4. We point out that

because we guarantee that only available pASIC3 logic cells

are used for the minimum area clustering, the number of empty

spaces for base gates in clusters is equal to or larger than the

number of free nodes.

B. Timing-driven Clustering

Delay caused by inter-cluster interconnect, which connects

pASIC3 logic cells through interconnect wires and antifuses,

tends to be much larger than the delay caused by intra-cluster

interconnect. Therefore, we can assume that inter-cluster delay

has a unit delay while the intra-cluster delay is negligible. This

assumption is reasonable because no placement and routing

information is known and the inter-cluster interconnect delay is

much longer than the intra-cluster interconnect delay. The

timing-driven clustering problem can be stated as follows.

Problem 5: Given a mapped network comprised of primitive

cells and the numbers of different cluster types for the packing

 10

solution that uses the minimum number of pASIC3 logic cells,

find a clustering solution that has the minimum number of

pASIC3 logic cells on the timing-critical paths of the circuit.

We use the notion of criticality of a node in a network as

described in [16]. The timing criticality of a node u is redefined

to have the range from 0 to 1 as follows:

()
()

1
slack u MinSlack

crit u
MaxSlack MinSlack

−
= −

−
 (13)

where slack(u) is the slack time of node u, MinSlack and

MaxSlack are the minimum slack and the maximum slack in

the network, respectively. When the criticality of a node is

higher than that of the other nodes, then the node will be on a

more critical timing path compared to the other nodes.

0.8

0.8 1.0

1.0

1.0

1.0

0.7

1.0

(a) (b)

n6

n8

n7 n5

n4
n3

n2
n1

0.8

0.8 1.0

1.0

1.0

1.0

0.7

1.0

n6

n8

n7 n5

n4n3

n2
n1

Fig. 8. Selecting the best node for clustering: (a) greedy

selection and (b) critical-path aware selection.

In [16], a node with the highest criticality is absorbed into

a cluster in a manner that possibly reduces the number of

clusters on the critical path. However, we observed that

packing nodes in such a greedy manner could increase the

number of clusters on the critical path. Fig. 8 depicts a situation

where greedily selecting a node with the largest criticality can

cause a worse clustering solution. Suppose that node n5 is a

seed node. After packing node n4 and n3, in Fig. 8(a), the

greedy algorithm will choose node n7 because its criticality is

greater than the criticalities of node n1 and n2. Note that this

will prevent another cluster from absorbing node n6, n7, and

node n8, which are on the critical paths. On the other hand, by

selecting node n2 in Fig. 8(b), node n6, n7, and n8 on the critical

paths can be packed into a cluster. From this example, we

notice that clustering a node with higher criticality than the

connected nodes in a cluster can lower the chance of reducing

the number of pASIC3 logic cells on the critical path.

Consider a partially-formed cluster L comprising of nodes

x1,…,xm. Let the absorbable neighboring nodes of L be denoted

by y1,…,yp. Let E(yj, L) denote the set of immediate neighbors

of yj in L. Furthermore, let maxNC(yj,L) and minNC(yj,L)

denote the maximum and the minimum criticalities of any node

in E(yj,L), respectively. Our approach selects the best node for

packing with an order of the following priority: 1) a neighbor

node, yj*, such that crit(yj*) is maximum among all yj’s and

crit(yj*) = maxNC(yj*,L); 2) a neighbor node, yj*, such that

crit(yj*) is maximum among all yj’s and crit(yj*) <

maxNC(yj*,L); and 3) a neighbor node, yj*, such that crit(yj*) is

minimum among all yj’s and crit(yj*) > minNC(yj*,L).

We use the same flow for the timing-driven clustering

under the minimum area constraint as the interconnect-aware

clustering. For seed selection, we give higher chance of being a

seed for those nodes on critical paths. Since nodes on critical

paths have the same criticality, we select the node with the

lowest connectivity value among those nodes. In the next step,

to select the best node for clustering, we use the algorithm

based on the priority.

VI. EXPERIMENT RESULTS

We have selected 18 large combinational circuits from the

MCNC91 benchmark. SIS [20] reads the circuits in blif format.

To evaluate our library generation and area-driven clustering,

we compare our results to those from a commercial tool, called

QuickWorks 4.1 from QuickLogic [19]. For QuickWorks 4.1,

the following options were selected to minimize area:

• Logic optimization: level – technology map,

mode-overnight, type-area, and no buffer insertion

• Placement and Route: overnight

QuickWorks uses the term cell fragment to indicate a

library cell generated from a pASIC3 logic cell. The results

were taken after placement. For our simulation set-up, the

library was read and script.rugged was used to optimize a

circuit. SIS was used for technology mapping with the library.

We estimated the minimum number of logic cells by using our

algorithms, Packer-area. Table III reports the results of the

area-driven clustering. In most of the cases, Packer-area used

fewer primitive cells than QuickWorks. Packer-area reduced

the number of pASIC3 logic cells by 12.29% on an average

compared to QuickWorks.

For timing-driven clustering experiments, because

clustering quality can be reflected in placement results, it

would be ideal if we could use QuickWorks to read, place, and

route the clustered circuits and then measure delays of

clustered circuits. Unfortunately, Quickworks does not read

clustered circuits from external inputs. Therefore, max-depth

which is a first-order measure of circuit delay in FPGA, is used

to quantify the circuit delay in the pre-layout phase.

Table IV shows the results of clustering with different

objectives such as the minimum number of external wires and

the minimum pASIC3 logic cells on the critical path.

Compared to the Packer-pASIC3-area-interconnect, the

Packer-pASIC3-area-timing generated more inter-cluster

interconnects by 7%. In order to measure the total wirelength

after placement and routing, we used the VPR [25].

Packer-area-interconnect provided a reduction on the total

wirelength by 4%, compared to the Packer-area-timing. In

terms of the number of clusters on the critical path, the

Packer-area-timing provided a shorter critical path than

 11

QuickWorks, and the Packer-area-interconnect by 35%, and

14%, respectively.

VII. CONCLUSION

In this paper, we presented clustering algorithms for

coarse-grained, antifuse-based FPGAs. We generated a library

set from the pASIC3 logic cell and mapped a network with the

library set. For the mapped network, we presented a dynamic

programming solution as a general solution to find the

minimum number of pASIC3 logic cells. By considering the

architectural characteristic of the pASIC3 logic cell, we set up

a pair of linear equations and found the optimal solution. With

this minimum area requirement, we proposed an

interconnect-aware clustering algorithm and a timing-driven

clustering algorithm. The interconnect-aware clustering

algorithm used connectivity information among nodes under

the constraint for the minimum area. The timing-driven

clustering algorithm intelligently packs nodes into clusters to

minimize the number of clusters on the critical path, by

avoiding false selection of critical nodes. For the minimum

number of pASIC3 logic cells, our low-bound calculating

algorithm provided approximately a 12% reduction, when

compared to QuickWorks from QuickLogic. The

interconnect-aware clustering also required a 21% reduction on

the number of inter-cluster interconnects, when compared to a

simple clustering algorithm based on placement and proximity

among nodes. The timing-driven clustering algorithm reduced

the number of pASIC3 logic cells on the critical path by 35%,

compared to QuickWorks.

REFERENCES

[1] S. Brown and J. Rose, "Architecture of FPGAs and CPLDs: A
Tutorial," IEEE Design and Test of Computers, Vol. 13, No. 2,
pp. 42-57, 1996.

[2] V. Betz, J. Rose, A. Marquardt, Architecture and CAD for
Deep-Submicron FPGAs, Kluwer Academic Publishers, 1999.

[3] Elias Ahmed, “The effect of logic block granularity on
deep-submicron FPGA performance and density,” M.A.Sc
thesis, University of Toronto, Canada, 2001.

[4] C.W. Kang, A. Iranli, and M. Pedram, "Technology mapping
and packing for coarse-grained, anti-Fuse based FPGAs," in
Proc. Asia-South Pacific Design Automation Conference, pp.
209-211, 2004.

[5] C.W. Kang and M. Pedram, "Clustering techniques for
coarse-grained, antifuse FPGAs," in Proc. Asia-South Pacific
Design Automation Conference, pp. 785-790, 2005.

[6] pASIC3 FPGA Family Datasheet, QuickLogic Corporation
(http://www.quicklogic.com).

[7] Virtex FPGA Datasheet, Xilinx Corporation
(http://www.xilinx.com).

[8] APEX FPGA Datasheet, Altera Corporation
(http://www.altera.com).

[9] J. Cong and Y. Ding, “FlowMap: An optimal technology
mapping algorithm for delay optimization in lookup-table based
FPGA designs,” IEEE Transactiosn on Computer-Aided Design,
Feb. 1994,vol. 13, no. 1, pp. 1- 12.

[10] J. Cong and Y. Ding, “Combinational logic synthesis for
SRAM-based field-programmable gate arrays,” ACM
Transactions on Des. Automat. Electron. System, April, pp. 145
– 204, 1996.

[11] S. Ercolani and G. De Micheli, “Technology mapping for
electrically programmable gate arrays,” in Proc. 28th ACM/IEEE
Design Automation Conference, 1991, pp. 234- 239.

[12] Yung-Te Lai, Sarma Sastry, and Massoud Pedram, “Boolean
matching using binary decision diagrams with applications to
logic synthesis and verification,” in Proc. IEEE International
Conference on Computer Design, 1992, pp. 42 – 458

[13] L. Benini and G. De Micheli, “A survey of Boolean matching
techniques for library binding,” ACM Trans. on Design
Automation of Electronic Systems, vol. 2, no. 3, pp. 193 – 226,
July 1997.

[14] J. Cong, J. Peck, and Y. Ding, “RASP: a general logic synthesis
system for SRAM-based FPGAs,” in Proc. FPGA, pp. 137 – 143,
1996.

[15] V. Betz and J. Rose, “Cluster-based logic blocks for FPGAs:
area-efficiency vs. input sharing and size,” in Proc Custom
Integrated Circuits Conference, 1997, pp. 551 – 554.

[16] Alexander Marquardt, Vaughn Betz, and Jonathan Rose, “Using
cluster-based logic blocks and timing-driven packing to improve
FPGA speed and density,” in Proc. FPGA, pp. 37- 46, 1999.

[17] E. Bozogzadeh, S. Ogrenci-Memik, M. Sarrafzadeh, “Rpack:
routability-driven packing for cluster-based FPGA,” in Proc.
Asia-South Pacific Design Automation Conference, pp. 629 –
634, 2001.

[18] A. Singh and M. Marek-Sadowska, “Efficient circuit clustering
for area and power reduction in FPGAs,” in Proc. FPGA, pp.
59-66, 2002.

[19] QuickLogic.com, QuickWorks User Manual

Table III

Results of lower-bound calculation

 QuickWorks Packer-pASIC3

Circuits
PASIC3

logic cells

PASIC3

logic

cells

pASIC3

logic

cells

i9 95 96 -1.05

rot 104 88 15.38

i8 184 142 22.83

pair 243 213 12.35

vda 131 79 39.69

x1 45 42 6.67

C6288 476 448 5.88

C5315 264 196 25.76

alu4 125 113 9.60

apex6 124 84 32.26

C880 57 54 5.26

C3540 181 175 3.31

alu2 66 57 13.64

C1355 57 53 7.02

C1908 56 55 1.79

C432 31 31 0.00

C499 58 53 8.62

Average Improvement (%) 12.29

 12

[20] Sentovich, E.M., et al., SIS: A system for sequential circuit
synthesis, 1992, Electronics Research Laboratory, College of
Engineering, University of California, Berkeley.

[21] M. Wang, X. Yang, and M. Sarrafzadeh, “Dragon2000:
standard-cell placement tool for large industry circuits,” in Proc.
International Conferecence on Computer Aided Design, 2000,
pp. 260-263.

[22] http://mathworld.wolfram.com

[23] W. E. Donath, “Placement and average interconnect
requirements of computer logic,” IEEE Trans. Circuits and
Systems, CAS-26:272-277, 1974.

[24] M. Tom and G. Lemieux, “Logic block clustering of large
designs for channel-width constrained FPGA,” in Proc. Design
Automation Conference, pp. 726-731, 2005.

[25] Vaughn Betz and Jonathan Rose, “VPR: a new packing,
placement, and routing tool for FPGA research,” Int’l Workshop
on FPL, 1997, pp. 213- 222.

[26] M. Pedram and B. Preas, “ Interconnection length analysis for
standard cell layouts,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 18, no. 10, Oct.
1999, pp. 1512 – 151.

Table IV

Results of different clustering objectives with the minimum area solution

 QuickWorks4.1 Packer-pASIC3-area-interconnect Packer-pASIC3-area-timing

Circuits

Total

Wires Max Depth

Max.

Depth

Inter-cluster

Wires

Wire

Length

Max.

Depth

Inter-cluster

Wires

Wire

Length

i9 462 9 8 285 4750 6 287 4649

rot 485 15 11 338 4881 9 379 5794

i8 701 9 8 475 9159 8 478 9599

pair 975 15 18 675 12080 14 761 11272

vda 329 10 11 247 3026 8 257 3123

x1 216 6 5 140 1890 5 152 1987

C6288 1545 91 69 1167 12049 67 1323 13659

C5315 894 16 18 661 14175 15 718 14471

alu4 433 25 23 284 3540 19 320 3843

apex6 464 9 8 338 6285 7 357 5899

C880 237 20 17 183 2060 17 197 1922

C3540 722 23 26 440 6743 23 547 6887

alu2 226 32 17 134 1650 16 164 1779

C1355 251 17 11 185 1350 12 186 1382

C1908 248 25 16 174 1506 14 186 1578

C432 156 25 22 101 802 16 113 804

C499 251 13 11 186 1352 11 182 1529

Average Change 1.35 1.14 1 1 1 1.07 1.04

