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Abstract — In this paper, we present a synthesis technique 

targeted toward coarse-grained, antifuse-based FPGAs. A macro 

logic cell, in this class of FPGAs, has multiple inputs and multiple 

outputs. A library of small logic cells can be generated from this 

macro cell, and used to map the target netlist. First, we calculate 

the minimum number of macro logic cells required to map a given 

circuit by using either a dynamic programming or a linear 

programming technique. Given this minimum number of macro 

logic cells, we introduce an interconnect-aware clustering 

algorithm that assigns logic cells to individual macro cells so as to 

minimize the routing costs. Alternatively, a timing slack-driven 

clustering algorithm is presented where timing criticalities of 

nodes in a network are calculated and used to determine the final 

packing into the macro cells so as to minimize the number of the 

macro cells on the critical paths. When compared to results from 

a commercial tool, our two synthesis techniques reduce the 

number of macro logic cells by 12%, and the maximum depth by 

35%, respectively. 

 
Index Terms—Antifuse, Clustering, Coarse-grained, FPGA 

I. INTRODUCTION 

Field programmable gate arrays (FPGAs) can provide many 

advantages over standard cells, in terms of satisfying market 

demand while assuring configurability. Fast time-to-market 

satisfies industry designers to keep up with newly created 

standards, and configurability provides flexible hardware on 

demand of both new standards without fabricating a new chip.  

FPGAs usually consist of small, configurable basic 

elements, connected by rich programmable interconnects [1].  

Since routing resources grow faster than on-chip logic 

resources, routing resources account for the major portion of 

the device’s overall area and delay [2]. In addition, speed and 

area-efficiency of an FPGA are directly related to the 

granularity of its logic block [3]. While coarse-grained blocks 

have long internal logic delays, they can reduce the placement 

and routing stress by having fast local routing and significantly 

reduce external routing. Typically, synthesis tools prefer “gate 

array-like” fine-grained architectures; however, fine-grained 

FPGA architectures generally yield a very poor performance 

due to the long delays resulting from building functions, with 

multiple levels of gates and slow interconnect elements. 

Coarse-grained architecture gives the tools the needed degrees 

of freedom for the high logic utilization benefits of a 

fine-grained architecture, without sacrificing the high 

performance benefits of coarse-grained, high fan-in 

architecture. Recently, FPGA manufacturers have introduced 

coarse-grained architectures. Examples of such devices are the 

pASIC3 [6], the Xilinx Virtex [7], and the Apex and Flex from 

Altera [8]. 
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Fig. 1. Coarse-grained, antifuse-based FPGA: (a) pASIC3 

logic cell, (b) architecture, and (c) antifuse switch. 

 

Coarse-grained, antifuse-based FPGAs have emerged as a 

promising technology for limited space, high speed, and low 

power. The architecture consists of interconnects, antifuse 

switches, and programmable logic cells as shown in Fig. 1(b). 

Fig. 1(a) shows a coarse-grained, antifuse-based pASIC3 logic 

cell, which has 26 inputs and four outputs. The function of the 

logic cell is determined by the logic levels applied to the inputs 

of the AND gates and multiplexers. The high logic capacity and 

wide fanin of the logic cell accommodate many user functions 

with a single level of logic delay. Because the architecture 

provides tremendous flexibility, with small hardware 

overhead, coarse-grained, antifuse-based FPGAs demands 
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highly intelligent CAD algorithms.  

Antifuse-based FPGAs are one time programmable logic 

devices. The antifuse is initially in a high impedance state and 

is transformed into a low impedance metal-to-metal link when 

programmed. Fig. 1(c) illustrates the cross-sectional view of 

the antifuse programming technology. The antifuse element is 

formed by depositing a high resistance layer (> 1GΩ) of 

amorphous silicon above a tungsten via a plug that would 

otherwise bridge the insulation between the two metal layers. 

When a programming voltage is applied to a selected via, a 

direct metal-to-metal link is formed by permanently 

transforming the silicon to a low resistance state. A typical 

resistance for a programmed connection is about ~30 Ω. The 

size of the programmed link is physically smaller than that of a 

via. The small size of the interconnect coupled with the high 

dielectric constant of the via material ensures that 

unprogrammed links exhibit capacitive loading < 1fF [6]. 

Clustering refers to the task of grouping logic gates in the 

circuit netlist and assigning each group to a configurable logic 

block in the FPGA array (in the case of our target architecture, 

this means packing gates into pASIC3 logic cells). Circuit 

clustering is an important technique for coarse-grained FPGAs. 

First, clustering can reduce the complexity of large circuit 

designs by a significant factor. Second, clustering can improve 

the quality of the results of other operations such as placement 

and routing  

In this paper, we present area-driven clustering techniques 

with considerations given to the routing complexity of 

inter-cluster interconnects and the delays in terms of the 

number of pASIC3 logic cells on critical paths. Although we 

target a specific logic cell architecture, e.g., pASIC3 FPGA, 

our method can be applied to similar type of coarse-grained, 

antifuse FPGAs with slight modification. For example, 

QuickLogic has recently launched new coarse-grained antifuse 

FPGA devices, named Eclipse II and PolarPro, which have a 

complex logic description and architecture. Our techniques can 

be easily modified to target these coarse-grained antifuse 

FPGA devices. 

We extract library cells from the pASIC3 logic cell and 

then mapped a network. After technology mapping, we 

calculate the minimum number of macro logic cells, which is a 

lower-bound, to cover the network by either dynamic 

programming or linear programming. Then, we cluster network 

by using the minimum number of available pASIC3 logic cells 

with considerations of interconnect and delay. The goal of the 

interconnect-aware clustering is to minimize the number of 

inter-cluster interconnects, while, for slack timing-driven 

clustering, we minimize the number of logic cells on the critical 

paths. 

A preliminary version of this work appeared in [4][5]. 

These papers presented different ways of computing the 

minimum number of macro logic cells and an algorithm for 

doing performance-driven clustering with node replication. 

The present manuscript unifies the findings of  [4][5] and 

extends them by describing clustering algorithms targeting the 

minimum number of inter-cluster interconnections and the 

minimum number of macro logic cells on the critical paths 

without any logic replication. New results and discussions are 

added to support these extensions. 

This paper is organized as follows. In Section II, a brief 

background on clustering techniques for FPGAs is provided. 

We present the proposed CAD tool flow and the procedure for 

creating a library set in section III. The lower-bound 

calculation algorithm for the minimum number of logic cells is 

presented in section IV. The area-driven clustering algorithms 

with interconnect awareness and delay optimization, are 

presented in section V. In section VI, the experimental results 

are provided. Finally, we conclude in section VII. 

II. BACKGROUND 

FPGAs have clusters with basic logic elements (BLEs) and 

those BLEs are ready to be programmed to implement specific 

functions. Therefore, the technology mapping locates a 

feasible portion of circuits and implements the functions of that 

portion into those  BLEs. For two different types of FPGAs, 

various mapping techniques have been developed. Cong and 

Ding developed FlowMap [9] that guarantees to produce 

depth-optimal mapping solutions. An extensive survey of 

existing SRAM-based FPGA mapping techniques is provided 

in [10]. For antifuse-based FPGAs, Boolean matching 

techniques have been used for technology mapping and those 

research results on technology mapping for antifuse logic cells 

have been reported in [11]. Boolean matching is therefore a key 

enabler for antifuse-based FPGA mapping. Lai et al. in [12] 

proposed a Boolean matching algorithm and introduced 

matching filters for speedup. A more comprehensive review is 

provided in [13]. 

Clustering techniques for two different technologies, 

SRAM and antifuse, are also somewhat different. 

SRAM-based FPGAs have logic clusters, each of which 

consists of multiple BLEs. Clustering BLEs have typically two 

constraints: the number of BLEs in a logic cluster and the 

number of inputs of a logic cluster. On the other hand, 

clustering gates for an antifuse-based logic cell means that all 

gates in a cluster must be able to realize functions completely 

within a logic cell, which is pASIC3 in this research. Since it is 

too difficult to map a network with multiple output logic cells, 

the macro logic cell must be divided into small base gates and 

library cells are generated from those base gates. After 

technology mapping, the library cells must be packed to fit the 

macro logic cell. Therefore, the constraint for packing is more 

stringent.  

As far as we know, there is not any prior work on 

clustering techniques targeting coarse-grained anti-fuse 

FPGAs and that is why our discussion of the prior work will 
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focus on clustering algorithms for SRAM-based FPGAs, from 

which we have borrowed some concepts and ideas.  

Clustering techniques for SRAM-based FPGAs have been 

evolving [13]-[18]. The algorithms have relied on good seed 

selection and smart gain functions to evaluate the gain of 

absorbing a neighbor node according to their objectives. The 

RASP [13] is a general synthesis and mapping system for 

SRAM-based FPGA. The clustering algorithm is based on a 

sequence of maximum weighted matching operations on a 

compatibility graph, which yields the proper grouping of LUTs 

into programmable logic blocks (PLBs). For each step, a 

compatibility graph is formed in which vertices represent the 

partial PLBs (initially LUTs) that will be considered for 

grouping at this step. An edge is formed between two vertices, 

if the two corresponding partial PLBs can be grouped into one. 

Then, weights are assigned to edges to guide the matching 

algorithm to select the best merging of partial PLBs. VPACK 

[15] is a clustering algorithm to minimize both the number of 

logic clusters and the number of used inputs to each cluster. 

Minimizing used inputs for each cluster is important to develop 

a routable design. The algorithm constructs each cluster 

sequentially. First, a seed BLE is chosen, which has the most 

used inputs among the currently unclustered BLEs. The inputs 

are a scarce resource. Thus, VPACK greedily selects the BLE 

that shares the most inputs and outputs with the cluster being 

constructed. 

T-VPACK [16] is based on VPACK algorithm [15]. Its 

optimization goal is minimizing the number of external 

connections (connections between clusters) on the critical path. 

Since the external cluster routing delay is much larger than the 

local routing inside a cluster, minimizing the number of routing 

on critical paths can improve delay significantly. The algorithm 

consists of two steps: static timing analysis and clustering. 

During the static timing analysis step, criticalities of 

interconnects are computed. During the clustering phase, 

selecting a seed BLE and attracting BLEs take place. The seed 

BLE is unclustered but has the most critical connection in the 

circuit. RPACK [17] is a routability-driven packing algorithm, 

which first identifies routability factors, prioritizes these 

factors into an improved clustering cost function. The beauty of 

iRAC is that it [18] packs closely connected components 

together, achieves spatial uniformity in the clustered design 

using Rent’s Rule [23], and reduces the external routing 

requirement in clustered FPGAs. It alleviates routing 

congestion for clustered FPGAs by absorbing as many small 

nets into clusters as possible, and depopulating clusters 

according to Rent’s rule in order to achieve spatial uniformity 

in the clustered netlist. 
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Fig. 2.  Proposed synthesis flow for pASIC3 family FPGA. 
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Fig. 3.  Base gates extracted from pASIC3 logic cell. 

 

 

A. Notation 

 To improve readability of this paper, we summarize the 

notation used throughout the paper in the following table. 

 

SAD set of library cells that can be 
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realized by personalization of either 

base-gate A or base-gate B 

S collection of sets of primitive cell 

types i.e., {SAD, …, SABCD} 

M number of distinct pASIC3 logic 

cell embeddings (configurations for 

filling a pASIC3 cell by primitive 

cell types) 

qi number of embeddings of type i 

utilized in a mapped network 

Ci,Sj number of type Sj primitive cells in 

the i
th

 embedding 

mSj number of the primitive cells of type 

Sj utilized in a mapped network 

nA number of base-gates A in a mapped 

network 

NpASIC3 number of pASIC3 logic cells 

needed to cover a network 

2A+2B, 2A+C, 

A+B+D 

cluster types according to the 

number of base gates in a cluster 

n2A+2B number of type 2A+2B clusters 

c(u,b) local connectivity factor of node u 

for a base gate realization of type b 

Pd(u) number of free nodes within 

topological distance d from node u 

Nd(u,b) number of absorbable nodes within 

distance d from node u for a base 

gate realization of type b 

G(L,u,b) gain value for merging node u that is 

realized with base gate b into cluster 

L  

r(x) number of pins on net x 

αL(x) number of pins of net x that are 

already inside cluster L 

Nets(L) Nets connected to nodes within 

cluster L 

crit(u) timing criticality of node u 

slack(u) timing slack of node u 

E(yj,L) set of neighboring nodes of node yj 

in cluster L 

maxNC(yj,L) the maximum criticalities of any 

node in N(yj,L) 

minNC(yj,L) the minimum criticalities of any 

node in N(yj,L) 

III. TOOL FLOW AND CELL LIBRARY 

CONSTRUCTION 

Fig. 2 shows our CAD tool flow for pASIC3 family FPGAs. 

We generate a cell library and configuration information from 

the pASIC3 logic cell. A target circuit is synthesized by SIS 

[20] and then the circuit is mapped by cells in the cell library. 

Our clustering tool called Packer-pASIC3 packs nodes mapped 

by library cells into clusters. A cluster is assigned to a pASIC3 

logic cell. VPR [25] places and routes the clustered network 

with the architecture description of pASIC3 family FPGAs. 

Mapping multiple output logic with large fanin inputs is 

very expensive in terms of the memory requirements and 

computational complexity, and the number of gates that may be 

generated from the pASIC3 logic cell by assigning 0 or 1 to its 

inputs (i.e., connecting inputs to either VDD or GND levels) is 

quite large. Therefore, we break the pASIC3 logic cell into 

manageable sub-blocks at the expense of not exploiting the full 

flexibility/programmability of the larger block. By 

appropriately connecting the control inputs of the four 

multiplexers (cf. mux1 through mux4 in Fig. 1) to zero or one 

logic levels, four base gates (A, B, C, and D) can be obtained 

as shown in Fig. 3. 
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Fig. 4.  Venn’s diagram of for the set of logic cells that can 

be personalized from base gates. 

 

After deriving the base gates, cell generation is performed 

for each base gate. Cell personalization is done either by 

assigning constant 1 or 0 to some of the inputs or by 

connecting some of the inputs together (bridging.) By applying 

all possible combinations of these two operations to a base 

gate, a large number of library cells can be generated. We call 

these personalized cells “primitive cells”. However, some of 

the primitive cells generated from different base gates will have 

identical Boolean function. In fact, we can draw a Venn’s 

diagram to depict the set relationship among the primitive cells 

that are generated from different base gates, as depicted in Fig. 

4. There are seven different primitive cell types, SAD, …, SABCD.  

SAD denotes the set of library cells that can be realized by 

personalization of either base-gate A or base-gate D. Other 

primitive cell types are similarly defined. 

Table I  Cell type distribution. 

Type 

set 
SAD SACD SBCD SC SD SCD SABCD 

Cells 3 5 20 714 110 28 6  

Note that the total number of primitive cells is more than 

5,000. Using all of these primitive cells results in high cpu time 

and memory usage during the FPGA mapping process, and 

should thus be avoided. To limit the number of primitive cells 

that tend to be useful in practice, we performed the following 

experiment. We selected thirteen circuits from the MCNC91 

benchmark suite and mapped each circuit to the full set of 



 

 

 5

primitive cells. Next we counted the number of times that each 

primitive cell was utilized as a match for an intermediate node 

of the technology decomposed Boolean network during the 

mapping process. We noticed that 886 primitive cells were 

matched at some node at least once i.e., more than 4000 

primitive cells were never used during the mapping process for 

these benchmark circuits. These primitive cells tended to be 

complex (multiple inputs and large number of literals in their 

factored forms.) So for the sake of improving the 

computational efficiency and reducing the memory usage of 

the mapper, we opted to keep only this set of 886 primitive 

cells. Note that the selected primitive cells include almost all of 

the standard cells in a typical ASIC library. Table I shows the 

cell distribution of those selected primitive cells. 

IV. LOWER-BOUND CALCULATION 

In this section, we provide an algorithm to find the minimum 

number of pASIC3 logic cells to cover a mapped network.  

A. Problem Statement and Dynamic Programming 

Once a mapped netlist is generated after technology mapping, 

we must solve the problem of clustering the primitive cells used 

in the mapped netlist into the pASIC3 logic cells. Since the 

mapping is performed before placement and routing, detailed 

physical information is not available. In addition, 

antifuse-based FPGAs have relatively rich routing resources 

since routing switches are abundant and many layers of metal 

wires can cross over the pASIC3 logic cells [1]. Thus, we have 

opted to minimize the total area taken by the pASIC3 logic 

cells during the initial clustering step.  

Problem 1: Given a mapped netlist comprised of primitive 

cells, find the minimum number of pASIC3 logic cells that can 

realize the network. 

There are seven different primitive cell types, SAD, …, 

SABCD, as defined in Fig. 4. Looking at Fig. 1(a), it is easy to see 

that base gates may conflict with one another in the sense that 

they cannot be packed together in the same pASIC3 logic cell. 

For example, base-gates B and C cannot be packed together in 

one pASIC3 cell. There is thus a fixed number of ways to 

embed (pack) a number of these primitive cells into one 

pASIC3 logic cell. For example, two type-AD primitive cells 

and two type-BCD primitive cells can be packed in a single 

logic cell by using two base-gate A’s and two base gate B’s. 

Alternatively, two type-AD primitive cells and one type-C 

primitive cell can be packed in one pASIC3 logic cell by using 

two base-gate A’s and one base-gate C. Any such embedding 

(out of M possible embeddings) gives rise to the following 

equation:   

, 1,...,
ji i S

j S

LC C i M
∈

= =∑  (1) 

where S is the collection of sets of primitive cell types, {SAD, 

…, SABCD}, and Ci,Sj is the number of type Sj primitive cells in 

the i
th

 embedding.  

The packing problem can be restated as follows. Given M 

configurations of filling a pASIC3 logic cell by primitive cells 

derived from the base gate types and a netlist of cells generated 

by the mapper, find the minimum number of logic cells that 

cover all cells in the netlist.  

Let mSj denote the number of the primitive cells of type Sj 

in a mapped network. For example, mAD is the number of 

type-AD primitive cells. The problem can be restated as: 

1

,

1

. . :
j j

M

i

i

M

j i i S S

i

Minimize q

s t S S q C m

=

=

∀ ∈ ⋅ ≥

∑

∑

 
(2) 

where qi is the number of embeddings of type i in the mapped 

network. This is the same problem as the well-known coin 

change problem as defined next.   

Coin Change Problem: Let c1, c2, ... cq be the coin types of a 

currency. Let Ci denote the value of coin ci in cents and K be 

some integer. We assume C1=1. The problem is to produce K 

cents of change by using a minimum number of coins. The 

recursive expression for the solution can be 

[ ] [ ]
:

0 0

min 1 0
i

ii C K

if K
cnt K

cnt K C if K
≤

=
=  − + >


 
    (3) 

where cnt[K] is the minimum number of coins for K cents. We 

can compute the optimal solution to the coin change problem 

by using a bottom-up approach. By solving the optimal 

solution for values smaller than K, we can find the optimal 

solution for the exact amount of K by referring to the optimal 

solutions of the previously solved sub-problems. The running 

time complexity is O(qK). 

To formulate the cell-packing problem, we must extend 

the coin change problem. First, instead of a single amount K, 

there will be seven different amounts, each of which is the 

number of primitive cells in the mapping solution that are in 

each of the seven base sets, SAD thru SABCD. The recurrence 

equation for this problem is written as follows: 

( )

( )( ), ,

,...,

0 : 0

min , ..., 1

j

AD ABCD

AD ABCD

j S

AD i S ABCD i Si

cnt m m

if S S m

cnt m C m C otherwise
∀

=

∀ ∈ ≤



− − +

     

(4) 

The complexity of the corresponding dynamic 

programming algorithm is: 

jS

j U

O mM
∈

 
 
 

⋅∏
. 

B. Set containment relations 

Base gates can be put into two classes: simple and complex 

base gates. A complex base gate is one that consists of multiple 

base gates and internal multiplexers, while a simple base gate 

cannot be composed by other base gates. Base-gates C and D 
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are complex, whereas base-gates A and B are simple. The 

inclusion relationship between these base-gates is expressed as 

follows: 

basegate basegate

basegate basegate

basegate basegate

B C

B D

A D

⊂

⊂

⊂

 
(5) 

Notice that when both a simple base gate and a complex 

base gate can implement a primitive cell, the simple base gate 

will be selected for realizing the function of the primitive cell. 

Realizing the function by the complex base gate not only 

wastes area of the pASIC3 logic cell but also needlessly 

increases the circuit delay. Therefore, we can safely state that 

base-gates C and D are inferior to base-gates A and B when 

they implement the same logic function.  

C. Minimum number of pASIC3 logic cells 

Given the number of base gate types needed for mapping a 

circuit, the key question is how many pASIC3 logic cells are 

required to contain all of the base gates. There are three types 

of pASIC3 embeddings (clusters) i.e., 2A+2B, 2A+C, and 

A+B+D. A type 2A+2B pASIC3 logic cell is defined as the 

pASIC3 logic cell that has two base-gate A’s and two base-gate 

B’s in it. Other types can be defined similarly.  

Theorem 1: Let nA denote the number of base-gates A in a 

mapped netlist. nB, nC, and nD are similarly defined. The 

minimum number of pASIC3 logic cells NpASIC3 needed to 

implement a mapped netlist containing nA, nB, nC, and nD 

base-gates can analytically be calculated as follows: 

3 2 2

2

2

( , )

2
2

2

0

2

0

= + +

− −
+ ≥

= 


−
≥

= 


pASIC A B C D

A C D
A C D

A

B D
B D

B

N MAX N N n n

n n n
n n n

N

otherwise

n n
n n

N

otherwise

 

(6) 

Proof: Base-gates C and D cannot be packed together while 

base-gates B and C cannot be packed together. Therefore, the 

number of type 2A+C pASIC3 logic cells is equal to the 

number of base-gate C’s. Similarly, the number of type 

A+B+D pASIC3 logic cells is equal to the number of base-gate 

D’s. The number of type 2A+2B pASIC3 logic cells is 

determined by dividing the maximum number between the 

number of base-gate A’s and base-gate B’s. However, a type 

2A+C pASIC3 logic cell can pack two base-gate A’s as well as 

one base-gate C. Thus, the actual number of base-gate A’s for 

type 2A+2B pASIC3 logic cells must be calculated by 

subtracting the number of base-gate A’s, which have been 

packed by type 2A+C and A+B+D pASIC3 logic cells, from 

the original number of base-gate A’s. Similarly, the actual 

number of base-gate B’s for type 2A+2B pASIC3 logic cells 

can be calculated. Finally, the total number of pASIC3 logic 

cells becomes the sum of all three type pASIC3 logic cells.

 � 

D. Type distribution table 

Theorem 1 can be used to significantly simplify the problem. 

After technology mapping, we count the number of primitive 

cells of specific types. The problem can be restated follows.  

Problem 2: Given a primitive cell library generated from the 

pASIC3 logic cell structure and a mapped network comprising 

the primitive cells, we want to find the best choices of base 

gates A, B, C and D for realizing all of the primitive cells in the 

network so as to minimize the number of required pASIC3 

logic cells.  

Note that after the base gate counts are known, the 

minimum number of logic cells can be computed 

straightforwardly based on Theorem 1.  

Table II 

The type distribution table for primitive cell to base-gate 

mapping 

# of Base-gate types # of primitive 

cell types A B C D 

mAD mAD 0 0 0 

mACD x 0 mACD – x 0 

mBCD 0 mBCD 0 0 

mD 0 0 0 mD 

mC 0 0 mC 0 

mCD 0 0 mCD –y y 

mABCD z mABCD – z 0 0  

Table II shows how a primitive cell of type Γ in the 

mapped network is realized with a base gate of type A, B, C, or 

D. Notice that many of the primitive cell types have a unique 

realization in a single base-gate type.  Examples include types 

BCD of primitive cells. Note that a type BCD primitive cell 

should be realized only using type B base gates because of the 

inclusion relationship of (5) and the fact that complex 

base-gates are always more costly than the corresponding 

simple base gates. Three of the primitive cell types, however, 

can be realized by using either of two base gates. For example 

type ACD primitive cell can be realized as either type A or type 

C base gate. This table shows that, to solve problem 2, all we 

have to do is to determine variables x, y and z where x denotes 

the number of primitive cells of type ACD that are realized as a 

type A base gate, y denotes the number of primitive cells of 

type CD that are realized as a type D base gate, and z denotes 

the number of primitive cells of type ABCD that are realized as 

a type A base gate. 

Problem 3: Given the occurrence count of different primitive 

cell types in a mapped network, find the values of variables x, y 

and z so as to minimize the number of pASIC3 logic cells 

required to cover the network.  
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E. Linear programming formulation and solution 

We formulate Problem 3 as a linear programming problem and 

then obtain the optimal solution by finding either the minimum 

point of an intersected plane of two equations [22] or the 

minimum point of an equation that is always above the other 

within certain ranges of variables. Equation (6) can be restated 

as in (7). 

( ){ }

( )

( )

( ) ( )

3 max ( , , ), ( , , )

0 ;0 ;0

1
,

2

2 3 0

,

1
,

2
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(7) 

The brute-force algorithm is to search for the optimal 

solution by trying out every possible combinations of x, y, and 

z within their allowed ranges (0 ≤ x ≤ mACD, 0 ≤ y ≤ mCD, 

0 ≤ z ≤ mABCD). The computational complexity, however, is 

( )× ×
ACD CD ABCD

O m m m , which can be quite high. Fortunately, 

equation (7) has an important property that allows us to speed 

up the search: As x, y, and z increase, NACD increases but NBCD 

decreases. Therefore, within allowed ranges of x, y, and z, 

equations for NACD and NBCD may intersect in a plane or one 

equation is above the other all the time. We explain the solution 

for the two cases as follows. 

Case 1: When NACD and NBCD intersect in a plane, at the 

intersected plane, NACD and NBCD become equal: 

( ) ( ) ( ), , , , , , 0= − = + + + =
ACD BCD

F x y z N x y z N x y z ax by cz d  (8) 

where a, b, c, and d are coefficients of an equation of a plane 

after the subtraction. All points in this plane guarantee that 

logic cells are full because NACD and NBCD are equal but 

choosing one arbitrary point on the plane may not give the 

optimal solution. Therefore, we need to find the point that gives 

the optimal solution in this plane. Notice that we should 

consider only points on the plane within the specified ranges 

for x, y, and z. Further more, we need to check only corners of 

the plane because of the property of NACD and NBCD mentioned 

above.  

Case 2: NACD and NBCD may not intersect at all, resulting in 

one equation lying above the other in the ranges of x, y, and z. 

In this case, simply, two points are evaluated: (x=0, y= 0, z = 0) 

and (x = mACD, y = mCD, z = mABCD). If NACD is larger than NBCD 

at x=0, y= 0, and z = 0, NACD(x=0 , y= 0, z = 0) is the minimum 

solution. Otherwise, NBCD (x = mACD, y = mCD, z = mABCD) is the 

minimum solution. 

The worst case of the above algorithm is when it requires 

checking all of the candidate points. Those candidate points 

can be enumerated by setting minimum or maximum values to 

variables except one variable. Therefore, the complexity is 
1( 2 )kO k −⋅  where k is the number of variables. In this case, k=3. 

Notice that the computational complexity of this algorithm is 

independent of the network size.  

From the optimal distribution of primitive cells, we can 

easily find out what kind of logic cells and how many of those 

logic cells are required. Notice that there are only three types of 

clusters (embeddings): 2A + 2B, 2A+C, and A+B+D. nA 

indicates the number of base-gate A required from the optimal 

distribution of primitive cells. Likewise, nB, nC, and nD can be 

computed by adding numbers for each column in Table II as 

followed: 

= + +

= + −

= − + + −

= +

A AD
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D D

n m x z

n m m z

n m x m m y
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 (9) 

The numbers of logic cells for different cluster types 

(nA+B+D, n2A+C, n2A+2B), can be computed by the following 

equations: 
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(10) 

Knowing the numbers of logic cells for each cluster type 

can be used to guide algorithms to achieve small area. We use 

this information as area constraints to build a clustering 

solution.  

V. THE CLUSTERING TECHNIQUE 

In this section, we present a cell clustering technique that 

considers both interconnect connectivity and circuit delay. The 

algorithm improves routability and delay under the constraints 

of the minimum number of pASIC3 logic cells for a given 

circuit.  

Knowing the minimum number of pASIC3 logic cells is 

not sufficient information to enable us to assign mapped nodes 

into the pASIC3 logic cells. In other words, we can calculate 

the minimum number of clusters of different types required for 

a circuit by using the algorithm described in the previous 

section. However, that algorithm does not produce a complete 

clustering solution because it does not take into account the 

connectivity between nodes in the circuit. There are two facts 

worth mentioning again. First, nodes that are mapped to a 
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certain primitive cell type can only be realized by a limited 

number of different base gates; second, there are upper-bounds 

on the number of different types of clusters, i.e., nA+B+D, n2A+C, 

and n2A+2B. We refer to these two conditions as resource 

constraints for a circuit. Therefore, when we create a new 

cluster, we have to ensure that the resource constraints are not 

violated. 

A. Interconnect-aware Clustering 

Since the routing area is one of the primary goals, we propose a 

heuristic algorithm of interconnect-aware clustering algorithm. 

The problem can be stated as follows:  

Problem 4: Given a network mapped to primitive cells and the 

number of different cluster types specified for the packing 

solution with the minimum number of pASIC3 logic cells, find 

a clustering solution that has the minimum number of 

inter-cluster interconnects. 

A wire connecting two un-clustered (free) nodes that can 

be packed together is called an absorbable wire. When an 

absorbable wire connects node u with some free node x, then 

we say that node x is an absorbable node with respect to node 

u. Considering conflicts between base gates in a pASIC3 logic 

cell, and motivated by [25], we define a local connectivity 

factor of node u for a base gate realization of type b as follows: 

( ),
( , )

( )

d

d

N u b
c u b

P u
=  (11) 

where Nd(u,b) is the number of absorbable nodes within 

distance d of node u for a base gate realization of type b 

whereas  Pd(u) is the total number of free nodes within 

topological distance d from node u. Higher local connectivity 

factor, c(u,b)≤1,  for a node u of base gate type b signifies that 

more absorbable nodes are located in the node’s neighborhood 

and/or that the number of nodes in its neighborhood is small.  

Fig. 5(a) and (b) show examples of calculating local 

connectivity factors for n3 assuming no cluster has been yet 

formed and for d = 1. For example, in Fig. 5(a), P1(n3)=4 while 

N1(n3,B)=4 since all nodes connected to n3 are compatible with 

base gate type B. Consequently, c=1. 

In Fig. 5(c), node n5 is non-absorbable with respect to n3 

because its base gate conflicts with base gate type B assigned to 

n3. Therefore, P1(n3)=4 while N1(n3,B)=3 and c=0.75. Fig. 5(c) 

depicts a case in which node n3 has two possible base gate 

realizations e.g., A or B. As a result, two connectivity factors 

must be calculated for each base gate as were done for Fig. 5(a) 

and (b). From this example, it becomes clear that each node 

may have different connectivity factors corresponding to 

different base gate realizations. 
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Fig. 5.  Examples of local connectivity factor computation. 

We propose a heuristic, interconnect-aware algorithm. 

Clustering is done in two steps. In the first step, the local 

neighborhood connectivity factor, c, for each base gate 

realization of each free node in the network is computed and a 

free node that has the highest local connectivity factor is 

chosen as a seed for a new cluster. Next, the type of the new 

cluster (and if the seed node admits different base gate 

realizations, the base gate type of the seed node) is determined 

based on the availability of compatible cluster types for the 

seed node i.e., a cluster type that is compatible with the base 

gate type of the seed node and has the highest availability is 

chosen. For example, with base gate type B for n3, a cluster 

type of 2A+2B may be chosen in Fig. 5(a) and (b) whereas a 

cluster type of 2A+C and a base gate type of A for n3 may be 

chosen in Fig. 5(c). Once the type of the cluster is determined, 

the number of available clusters for the type is reduced by one 

and an absorbable node which is compatible with the selected 

cluster type and has the highest affinity toward the cluster is 

packed into the cluster (see below.) The process is continued 

until no further clustering can be performed or no free node 

remains in the network. 

Notice that the above heuristic for seed selection may be 

improved by considering the composition of the base gate 

types of the neighbors of the seed node. 

D

B

A

AB

C

net1

net2

net0

L

X

Z

Y

 

Fig. 6.  Example of packing a new node into a partially 

formed cluster. 

The degree of a node’s affinity toward a cluster may be 

quantified by a gain function. Motivated by [18], given a 
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partially formed cluster L and a merging candidate node u with 

base gate realization b, the gain of packing u into L is 

calculated as follows:  

( ) ( )

0 if  cannot be merged into 

( , , ) 1 ( )
otherwise

( )

L

x Nets L Nets u

u L

G L u b x

r x

α

∈ ∩




≡ +



∑
 

(12) 

where Nets(L) and Nets(u) refer to the set of nets connected to 

nodes inside L and to u, respectively. αL(x) denotes the number 

of pins of net x that are already inside cluster L and r(x) is the 

number of pins of net x.  

Fig. 6 depicts an example of gain calculation. Notice that 

net2 cannot be absorbed into cluster L because the cluster type 

of L is either 2A+2B or A+B+D, and node Z of base gate type 

C is not compatible with either cluster type. Therefore, either 

node X or node Y will be merged into L. If we consider only the 

gain, node Y must be packed into cluster L because it has 

higher gain than node X. However, we also have to ensure that 

the resource constraint is satisfied. For example, when we 

choose node Y with base gate A or B, the cluster type of the 

new cluster becomes 2A+2B. If there is no available pASIC3 

logic cell of type 2A+2B, node Y cannot be packed into cluster 

L. Instead, assuming that there is an available cluster of type 

A+B+D, node X will be placed into cluster L.  

At the end of the process described above, we may be left 

with a situation in which all available pASIC3 logic cells have 

been partially utilized, yet there are still un-clustered nodes. 

This is possible, for example, when an unfilled cluster cannot 

find a new node to bring in because all of its neighboring nodes 

have already been assigned to some other cluster, or all of its 

free neighbor nodes have resource conflicts with nodes that are 

already in that cluster. From our experiments, on average 20% 

of the nodes in a circuit are not clustered at the end of the 

clustering procedure described above.  

To address this issue, we pack the remaining free nodes 

into unfilled clusters by using a linear assignment procedure as 

follows. We place the complete netlist composed of the (filled 

and unfilled) clusters and the free nodes by using a VPR 

high-temperature simulated annealing placer [25]. We can thus 

calculate the Euclidean distances between the unfilled clusters 

and the free nodes based on the placement result. Finally, we 

set up a linear assignment (bipartite graph matching) problem 

where on one side are the free nodes and on the other side are 

the unfilled clusters. An edge exists between a free node and an 

unfilled cluster if the node is absorbable into that cluster (e.g., 

it has compatible base gate type with respect to the unfilled 

portion of the cluster type.) The edge weight is set to the 

Euclidean distance between its two end points. This problem is 

solved optimally and in polynomial time using linear 

assignment solvers. 
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Fig. 7.  Packing un-clustered nodes by using linear 

assignment: (a) partially clustered network; (b) bipartite 

graph for linear assignment. 

Fig. 7 shows an example of transforming the partially 

clustered network into a bipartite graph for linear assignment. 

Notice that node n3 cannot be clustered into L3 because n3 

needs a type-A base gate mapping, which is not available in L3. 

On the other hand, since a type-AB primitive cell can be 

implemented either by a base-gate A or by a base-gate B, nodes 

n1 and n2 can be clustered into either L3 or L4. We point out that 

because we guarantee that only available pASIC3 logic cells 

are used for the minimum area clustering, the number of empty 

spaces for base gates in clusters is equal to or larger than the 

number of free nodes. 

B. Timing-driven Clustering 

Delay caused by inter-cluster interconnect, which connects 

pASIC3 logic cells through interconnect wires and antifuses, 

tends to be much larger than the delay caused by intra-cluster 

interconnect. Therefore, we can assume that inter-cluster delay 

has a unit delay while the intra-cluster delay is negligible. This 

assumption is reasonable because no placement and routing 

information is known and the inter-cluster interconnect delay is 

much longer than the intra-cluster interconnect delay. The 

timing-driven clustering problem can be stated as follows. 

Problem 5: Given a mapped network comprised of primitive 

cells and the numbers of different cluster types for the packing 
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solution that uses the minimum number of pASIC3 logic cells, 

find a clustering solution that has the minimum number of 

pASIC3 logic cells on the timing-critical paths of the circuit. 

We use the notion of criticality of a node in a network as 

described in [16]. The timing criticality of a node u is redefined 

to have the range from 0 to 1 as follows: 

( )
( )

1
slack u MinSlack

crit u
MaxSlack MinSlack

−
= −

−
 (13) 

where slack(u) is the slack time of node u, MinSlack and 

MaxSlack are the minimum slack and the maximum slack in 

the network, respectively. When the criticality of a node is 

higher than that of the other nodes, then the node will be on a 

more critical timing path compared to the other nodes. 
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Fig. 8.  Selecting the best node for clustering: (a) greedy 

selection and (b) critical-path aware selection. 

In [16], a node with the highest criticality is absorbed into 

a cluster in a manner that possibly reduces the number of 

clusters on the critical path. However, we observed that 

packing nodes in such a greedy manner could increase the 

number of clusters on the critical path. Fig. 8 depicts a situation 

where greedily selecting a node with the largest criticality can 

cause a worse clustering solution. Suppose that node n5 is a 

seed node. After packing node n4 and n3, in Fig. 8(a), the 

greedy algorithm will choose node n7 because its criticality is 

greater than the criticalities of node n1 and n2. Note that this 

will prevent another cluster from absorbing node n6, n7, and 

node n8, which are on the critical paths. On the other hand, by 

selecting node n2 in Fig. 8(b), node n6, n7, and n8 on the critical 

paths can be packed into a cluster. From this example, we 

notice that clustering a node with higher criticality than the 

connected nodes in a cluster can lower the chance of reducing 

the number of pASIC3 logic cells on the critical path. 

Consider a partially-formed cluster L comprising of nodes 

x1,…,xm. Let the absorbable neighboring nodes of L be denoted 

by y1,…,yp. Let E(yj, L) denote the set of immediate neighbors 

of yj in L. Furthermore, let maxNC(yj,L) and minNC(yj,L) 

denote the maximum and the minimum criticalities of any node 

in E(yj,L), respectively. Our approach selects the best node for 

packing with an order of the following priority: 1) a neighbor 

node, yj*,  such that crit(yj*) is maximum among all yj’s and 

crit(yj*) =  maxNC(yj*,L);  2) a neighbor node, yj*,  such that 

crit(yj*) is maximum among all yj’s and crit(yj*) < 

maxNC(yj*,L);  and 3) a neighbor node, yj*,  such that crit(yj*) is 

minimum among all yj’s and crit(yj*) > minNC(yj*,L).  

We use the same flow for the timing-driven clustering 

under the minimum area constraint as the interconnect-aware 

clustering. For seed selection, we give higher chance of being a 

seed for those nodes on critical paths. Since nodes on critical 

paths have the same criticality, we select the node with the 

lowest connectivity value among those nodes. In the next step, 

to select the best node for clustering, we use the algorithm 

based on the priority.   

VI.  EXPERIMENT RESULTS 

We have selected 18 large combinational circuits from the 

MCNC91 benchmark. SIS [20] reads the circuits in blif format. 

To evaluate our library generation and area-driven clustering, 

we compare our results to those from a commercial tool, called 

QuickWorks 4.1 from QuickLogic [19]. For QuickWorks 4.1, 

the following options were selected to minimize area: 

• Logic optimization: level – technology map, 

mode-overnight, type-area, and no buffer insertion 

• Placement and Route: overnight 

QuickWorks uses the term cell fragment to indicate a 

library cell generated from a pASIC3 logic cell. The results 

were taken after placement.  For our simulation set-up, the 

library was read and script.rugged was used to optimize a 

circuit. SIS was used for technology mapping with the library. 

We estimated the minimum number of logic cells by using our 

algorithms, Packer-area. Table III reports the results of the 

area-driven clustering. In most of the cases, Packer-area used 

fewer primitive cells than QuickWorks. Packer-area reduced 

the number of pASIC3 logic cells by 12.29% on an average 

compared to QuickWorks. 

For timing-driven clustering experiments, because 

clustering quality can be reflected in placement results, it 

would be ideal if we could use QuickWorks to read, place, and 

route the clustered circuits and then measure delays of 

clustered circuits. Unfortunately, Quickworks does not read 

clustered circuits from external inputs. Therefore, max-depth 

which is a first-order measure of circuit delay in FPGA, is used 

to quantify the circuit delay in the pre-layout phase. 

Table IV shows the results of clustering with different 

objectives such as the minimum number of external wires and 

the minimum pASIC3 logic cells on the critical path. 

Compared to the Packer-pASIC3-area-interconnect, the 

Packer-pASIC3-area-timing generated more inter-cluster 

interconnects by 7%. In order to measure the total wirelength 

after placement and routing, we used the VPR [25]. 

Packer-area-interconnect provided a reduction on the total 

wirelength by 4%, compared to the Packer-area-timing. In 

terms of the number of clusters on the critical path, the 

Packer-area-timing provided a shorter critical path than 
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QuickWorks, and the Packer-area-interconnect by 35%, and 

14%, respectively. 

 

VII. CONCLUSION 

In this paper, we presented clustering algorithms for 

coarse-grained, antifuse-based FPGAs. We generated a library 

set from the pASIC3 logic cell and mapped a network with the 

library set. For the mapped network, we presented a dynamic 

programming solution as a general solution to find the 

minimum number of pASIC3 logic cells. By considering the 

architectural characteristic of the pASIC3 logic cell, we set up 

a pair of linear equations and found the optimal solution. With 

this minimum area requirement, we proposed an 

interconnect-aware clustering algorithm and a timing-driven 

clustering algorithm. The interconnect-aware clustering 

algorithm used connectivity information among nodes under 

the constraint for the minimum area. The timing-driven 

clustering algorithm intelligently packs nodes into clusters to 

minimize the number of clusters on the critical path, by 

avoiding false selection of critical nodes. For the minimum 

number of pASIC3 logic cells, our low-bound calculating 

algorithm provided approximately a 12% reduction, when 

compared to QuickWorks from QuickLogic. The 

interconnect-aware clustering also required a 21% reduction on 

the number of inter-cluster interconnects, when compared to a 

simple clustering algorithm based on placement and proximity 

among nodes. The timing-driven clustering algorithm reduced 

the number of pASIC3 logic cells on the critical path by 35%, 

compared to QuickWorks. 
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Table IV 

Results of different clustering objectives with the minimum area solution 

  QuickWorks4.1 Packer-pASIC3-area-interconnect Packer-pASIC3-area-timing 

Circuits 

Total 

Wires Max Depth 

Max. 

Depth 

Inter-cluster 

Wires 

Wire 

Length 

Max. 

Depth 

Inter-cluster 

Wires 

Wire 

Length 

i9 462 9 8 285 4750 6 287 4649 

rot 485 15 11 338 4881 9 379 5794 

i8 701 9 8 475 9159 8 478 9599 

pair 975 15 18 675 12080 14 761 11272 

vda 329 10 11 247 3026 8 257 3123 

x1 216 6 5 140 1890 5 152 1987 

C6288 1545 91 69 1167 12049 67 1323 13659 

C5315 894 16 18 661 14175 15 718 14471 

alu4 433 25 23 284 3540 19 320 3843 

apex6 464 9 8 338 6285 7 357 5899 

C880 237 20 17 183 2060 17 197 1922 

C3540 722 23 26 440 6743 23 547 6887 

alu2 226 32 17 134 1650 16 164 1779 

C1355 251 17 11 185 1350 12 186 1382 

C1908 248 25 16 174 1506 14 186 1578 

C432 156 25 22 101 802 16 113 804 

C499 251 13 11 186 1352 11 182 1529 

Average Change 1.35 1.14 1 1 1 1.07 1.04  

 

 

 


